Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2020_20_4_a8, author = {A. S. Beskrovny and L. V. Bessonov and D. V. Ivanov and I. V. Kirillova and L. Yu. Kossovich}, title = {Using the {Mask-RCNN} convolutional neural network to automate the construction of two-dimensional solid vertebral models}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {502--516}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a8/} }
TY - JOUR AU - A. S. Beskrovny AU - L. V. Bessonov AU - D. V. Ivanov AU - I. V. Kirillova AU - L. Yu. Kossovich TI - Using the Mask-RCNN convolutional neural network to automate the construction of two-dimensional solid vertebral models JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2020 SP - 502 EP - 516 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a8/ LA - ru ID - ISU_2020_20_4_a8 ER -
%0 Journal Article %A A. S. Beskrovny %A L. V. Bessonov %A D. V. Ivanov %A I. V. Kirillova %A L. Yu. Kossovich %T Using the Mask-RCNN convolutional neural network to automate the construction of two-dimensional solid vertebral models %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2020 %P 502-516 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a8/ %G ru %F ISU_2020_20_4_a8
A. S. Beskrovny; L. V. Bessonov; D. V. Ivanov; I. V. Kirillova; L. Yu. Kossovich. Using the Mask-RCNN convolutional neural network to automate the construction of two-dimensional solid vertebral models. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 4, pp. 502-516. http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a8/
[1] Kazhanov I. V., Mikityuk S. I., Dol' A.V., Ivanov D. V., Kharlamov A. V., Petrov A. V., Kossovich L. Yu., Manukovskiy V. A., “Biomechanical Modeling of Options for Internal Fixation of Unilateral Fractures of the Sacrum”, Traumatology and Orthopedics of Russia, 26:2 (2020), 79–90 (in Russian) | DOI | MR
[2] Kudjashev A. L., Hominec V. V., Teremshonok A. V., Korostelev K. E., Nagornyj E. B., Dol A. V., Ivanov D. V., Kirillova I. V., Kossovich L. Yu., “Biomechanical background for the formation of proximal junctional kyphosis after the transpedicular fixation of the lumbarian spine”, Russian Journal of Biomechanics, 21:3 (2017), 270–278 | DOI
[3] Donnik A. M., Ivanov D. V., Kossovich L. Ju., Levchenko K. K., Kireev S. I., Morozov K. M., Ostrovskij N. V., Zareckov V. V., Lihachev S. V., “Creation of 3D Solid Models of the Spine with Transpedicular Fixation Using Specialized Software”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 19:4 (2019), 424–438 (in Russian) | DOI | MR
[4] Stewart R. D., Fermin I., Opper M., “Region growing with pulse-coupled neural networks: An alternative to seeded region growing”, IEEE Trans. on Neural Networks, 13:6 (2002), 1557–1562 | DOI
[5] Chandhok C., “A Novel Approach to Image Segmentation using Artificial Neural Networks and K-Means Clustering”, International Journal of Engineering Research and Applications, 2:3 (2012), 274–279 | DOI
[6] Belim S. V., Larionov S. B., “Image segmentation algorithm using an artificial neural network without using other images”, Radio Engineering, 2017, no. 3, 43–53 (in Russian) | DOI
[7] Dol D., Dol A., Bessonov L., Ivanov. D., Beskrovny A., Falkovich A., Ostrovsky N., “Methods of constructing an outline simple closed contour for modeling functional spine unit on CT slice”, Progress in Biomedical Optics and Imaging, Proceedings of SPIE, 11229, 2020, 112291Q | DOI
[8] Medvedev D. G., “Algorithm for highlighting the outline of an object with fuzzy edges”, Actual problems of the humanities and natural sciences, 2:1 (2014), 56–61 (in Russian)
[9] Withey D. J., Koles Z. J., “Medical Image Segmentation: Methods and Software”, Joint Meeting of the 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging (Hangzhou, 2007), 140–143 | DOI
[10] Beskrovny A. S., Makhankov A. V., Bessonov L. V., Lemeshkin M. O., “Application of artificial neural network technologies to vertebral segmentation according on CT data”, Progress in Biomedical Optics and Imaging, Proceedings of SPIE, 11229, 2020, 112291Y | DOI
[11] Kolesnikova A. S., Bessonov L. V., Luneva A D., Dmitriev P. O., Matershev I. V., Kurchatkin A. A., Zolotov V. S., Sidorenko D. A., Chuvashkin V. K., Varjuhin A. A., Gushhina S. G., “Development of the approach for improvements method of active circles”, Information Technologies for the Physician, 3 (2018), 61–72 (in Russian)
[12] Long J., Shelhamer E., Darrell T., “Fully convolutional networks for semantic segmentation”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Boston, Massachusetts, 2015), 3431–3440 | DOI
[13] Badrinarayanan V., Kendall A., Cipolla R., “SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation”, IEEE Trans. Pattern Anal. Mach. Intell., 39:12 (2017), 2481–2495 | DOI
[14] Kamnitsas K., Ferrante E., Parisot S., Ledig C., Nori A. V., Criminisi A., Rueckert D., Glocker B., “DeepMedic for Brain Tumor Segmentation”, Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, BrainLes: 2016, Lecture Notes in Computer Science, 10154, eds. A. Crimi, B. Menze, O. Maier, M. Reyes, S. Winzeck, H. Handels, Springer, Cham, 138–149 | DOI
[15] Noh H., Hong S., Han B., “Learning deconvolution network for semantic segmentation”, Proc. IEEE Int. Conf. Comput. Vis. (ICCV) (Santiago, 2015), 2015, 1520–1528 | DOI
[16] Chaurasia A., Culurciello E., “LinkNet: Exploiting encoder representations for efficient semantic segmentation”, IEEE Visual Communications and Image Processing (VCIP) (St. Petersburg, FL, 2017), 2017, 1–4 | DOI
[17] He K., Gkioxari G., Dollár P., Girshick R., “Mask R-CNN”, IEEE International Conference on Computer Vision (ICCV) (Venice, 2017), 2017, 2980–2988 | DOI
[18] He K., Zhang X., Ren S., Sun J., “Deep Residual Learning for Image Recognition”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Las Vegas, NV, 2016), 2016, 770–778 | DOI
[19] Samarskij A. A., Gulin A. V., Numerical methods, Nauka, M., 1989, 432 pp. (in Russian)
[20] Yao A. D., Cheng D. L., Pan I., Kitamura F., “Deep Learning in Neuroradiology: A Systematic Review of Current Algorithms and Approaches for the New Wave of Imaging Technology”, Radiology: Artificial Intelligence, 2:2 (2020), 6 | DOI
[21] Ivanov D. V., Kirillova I. V., Kossovich L. Yu., Bessonov L. V., Petraikin A. V., Dol A. V., Ahmad E. S., Morozov S. P., Vladzymyrskyy A. V., Sergunova K. A., Kharlamov A. V., “Influence of Convolution Kernel and Beam-Hardening Effect on the Assessment of Trabecular Bone Mineral Density Using Quantitative Computed Tomography”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 20:2 (2020), 205–219 | DOI | MR
[22] Sekuboyina A., Bayat A., Husseini M. E., Löffler M., Rempfler M., Kukacka J., Tetteh G., Valentinitsch A., Payer C., Urschler M., Chen M., Cheng D., Lessmann N., Hu Y., Wang T., Yang D., Xu D., Ambellan F., Zachow S., Jiang T., Ma X., Angerman Ch., Wang X., Wei Q. Brown K., Wolf M., Kirszenberg A., Puybareauq É., Menze B. H., Kirschke J., VerSe: A Vertebrae Labelling and Segmentation Benchmark, 2020, 30 pp., arXiv: 2001.09193 [cs.CV]