Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2020_20_4_a7, author = {Thong D. Pham and D. V. Tarlakovskii}, title = {Dynamic bending of an infinite electromagnetoelastic rod}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {493--501}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a7/} }
TY - JOUR AU - Thong D. Pham AU - D. V. Tarlakovskii TI - Dynamic bending of an infinite electromagnetoelastic rod JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2020 SP - 493 EP - 501 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a7/ LA - ru ID - ISU_2020_20_4_a7 ER -
%0 Journal Article %A Thong D. Pham %A D. V. Tarlakovskii %T Dynamic bending of an infinite electromagnetoelastic rod %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2020 %P 493-501 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a7/ %G ru %F ISU_2020_20_4_a7
Thong D. Pham; D. V. Tarlakovskii. Dynamic bending of an infinite electromagnetoelastic rod. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 4, pp. 493-501. http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a7/
[1] Ambarcumyan S. A., Bagdasaryan G. E., Belubekyan M. V., Magnetoelasticity of thin shells and plates, Nauka, M., 1977, 272 pp. (in Russian)
[2] Bardzokas D. I., Zobnin A. I., Senik N. A., Fil'shtinskii M. L., Mathematical modeling in problems of mechanics of coupled fields, v. 2, Static and dynamic problems of electroelasticity for composite multiply connected bodies, KomKniga, M., 2005, 374 pp. (in Russian)
[3] Bardzokas D. I., Kudryavcev B. A., Senik N. A., Wave propagation in electromagnetoelastic media, URSS, M., 2003, 336 pp. (in Russian)
[4] Korotkina M. R., Electromagnetoelasticity, Moscow Univ. Press, M., 1988, 302 pp. (in Russian)
[5] Altay G., Dokmeci M. C., “On the fundamental equations of electromagnetoelastic media in variational form with an application to shell-laminae equations”, International Journal of Solids and Structures, 47:3–4 (2010), 466–492 | DOI | MR | Zbl
[6] Grinchenko V. T., Ulitko A. F., Shulga N. A., The mechanics of related fields in structural elements, in 5 vols, v. 5, Electroelasticity, Naukova dumka, Kiev, 1989, 280 pp. (in Russian)
[7] Kalinchuk V. V., Belyankova T. I., Dynamic contact tasks for prestressed electroelastic media, Fizmatlit, M., 2006, 273 pp. (in Russian)
[8] Novackij V., Electromagnetic effects in solids, Mir, M., 1986, 126 pp. (in Russian)
[9] Parton V. Z., Kudryavcev B. A., Electromagnetoelasticity of piezoelectric and electrically conductive bodies, Nauka, M., 1988, 470 pp. (in Russian)
[10] Khoroshun L., “Construction of dynamic equations of electromechanics of dielectrics and piezoelectrics based on two-continuum mechanics”, Fiz.-mat. modelyuv. inf. tekhnol., 2006, no. 3, 177–198 (in Russian)
[11] Wang Xiaomin, Shen Yapeng, “Some fundamental theory of electro-magneto-thermo-elastic media. I. The theory of dynamics”, Chinese Journal of Applied Mechanics, 1994, no. 3, 42–49
[12] Pao Y. H., Yeh C. S., “A linear theory for soft ferromagnetics elastic solids”, Int. J. Engng. Sci., 11 (1983), 415–436
[13] Vatulyan A. O., “Fundamental solutions in non-stationary problems of electroelasticity”, PMM, 60:2 (1996), 309–312 (in Russian) | Zbl
[14] Melnik V. N., “The existence and uniqueness theorems of a generalized solution for a class of non-stationary problems of coupled electroelasticity”, Soviet Math (Iz. VUZ), 35:4 (1991), 23–30 | MR | Zbl
[15] Jiang A., Ding H., “Analytical solutions to magneto-electro-elastic beams”, Structural Engineering and Mechanics, 18:2 (2004), 195–209 | DOI
[16] Cheban V. G., Fornya G. A., “Solution of the problem of the propagation of an electroelastic wave in a piezoceramic rod”, Izv. AN MSSR. Matematika, 1990, no. 1, 55–59 (in Russian) | Zbl
[17] Stepanov G. V., Babuckii A. I., Mameev I. A., “Nonstationary Stress-Strain State of a Long Rod Induced by a High-Density Electric Pulse”, Strength problems, 2004, no. 4, 60–67 (in Russian)
[18] Vestyak V. A., Tarlakovskii D. V., “The Model of Thin Electromagnetoelastic Shells Dynamics”, Proceedings of the Second International Conference on Theoretical, Applied and Experimental Mechanics. Structural Integrity, Springer, Nature Switzerland AG, 2019, 254–258 | DOI
[19] Gorshkov A. G., Medvedskii A. L., Rabinskii L. N., Tarlakovskii D. V., Waves in continuous media, Fizmatlit, M., 2004, 472 pp. (in Russian)
[20] Vestyak V. A., Gachkevich A. R., Musii R. S., Tarlakovskii D. V., Fedotenkov G. V., Two-dimensional non-stationary waves in electromagnetoelastic bodies, Fizmatlit, M., 2019, 288 pp. (in Russian)
[21] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and series, in 3 vols, v. 1, Elementary Functions, Fizmatlit, M., 2002, 623 pp. (in Russian) | MR
[22] Ditkin V. A., Prudnikov A. P., Handbook of operational calculus, Vysshaya shkola, M., 1965, 467 pp. (in Russian) | MR