Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2020_20_4_a5, author = {Yu. N. Radayev}, title = {Representation of waves of displacements and micro-rotations by systems of the screw vector fields}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {468--477}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a5/} }
TY - JOUR AU - Yu. N. Radayev TI - Representation of waves of displacements and micro-rotations by systems of the screw vector fields JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2020 SP - 468 EP - 477 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a5/ LA - en ID - ISU_2020_20_4_a5 ER -
%0 Journal Article %A Yu. N. Radayev %T Representation of waves of displacements and micro-rotations by systems of the screw vector fields %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2020 %P 468-477 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a5/ %G en %F ISU_2020_20_4_a5
Yu. N. Radayev. Representation of waves of displacements and micro-rotations by systems of the screw vector fields. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 4, pp. 468-477. http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a5/
[1] Cosserat E., Cosserat F., Theorie des corps deformables, Herman et Fils, Paris, 1909, 226 pp. | Zbl
[2] Southwell R. V., An Introduction to the Theory of Elasticity for Engineers and Physicists, Oxford Engineering Science Series, Clarendon Press, Oxford; Oxford University Press, London, 1936, 510 pp. | Zbl
[3] Lurie A. I., Theory of Elasticity, Springer, Berlin–Heidelberg, 2005, 1050 pp.
[4] Nowacki W., Theory of Asymmetric Elasticity, Pergamon Press, Oxford–New York–Toronto–Sydney–Paris–Frankfurt, 1986, 383 pp. | MR | Zbl
[5] Nowacki W., Theory of Elasticity, Mir, M., 1975, 872 pp. (in Russian) | MR
[6] Radayev Yu. N., “The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 22:3 (2018), 504–517 (in Russian) | DOI | Zbl
[7] Achenbach J. D., Wave Propagation in Elastic Solids, North-Holland Series in Applied Mathematics and Mechanics, 16, American Elsevier, Amsterdam–London–North-Holland–New York, 1973, 425 pp. | MR | Zbl
[8] Kovalev V. A., Radayev Yu. N., Wave Problems of the Field Theory, Izd-vo Saratovskogo universiteta, Saratov, 2010, 328 pp. (in Russian)
[9] Truesdell C., Toupin R., “The Classical Field Theories”, Encyclopedia of Physics, v. III/1, Principles of Classical Mechanics and Field Theory, ed. S. Flugge, Springer, Berlin–Gottingen–Heidelberg, 1960, 226–902 | MR
[10] Gunter W., “Zur Statik und Kinematik des Cosseratschen Kontinuums”, Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft, 10, 1958, 195–213 (in Germany)
[11] Kessel S., “Lineare Elastizitatstheorie des anisotropen Cosserat-Kontinuums”, Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft, 16, 1964, 1–22 (in Germany) | Zbl
[12] Pal'mov V. A., “Fundamental equations of the theory of asymmetric elasticity”, J. Appl. Math. Mech., 28:3 (1964), 496–505 | DOI | MR
[13] Neuber H., “Über Probleme der Spannungskonzentration im Cosserat-Körper”, Acta Mechanica, 2:1 (1966), 48–69 (in Germany) | DOI | MR | Zbl
[14] Dyszlewicz J., Micropolar Theory of Elasticity, Lecture Notes in Applied and Computational Mechanics, Springer, Berlin–Heidelberg, 2004, 345 pp. | DOI | MR | Zbl