Subsystems and automorphisms of some finite magmas of order $k+k^2$
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 4, pp. 457-467.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to the study of subsystems of some finite magmas $\mathfrak{S}=(V,*) $ with a generating set of $k$ elements and order $k+k^2$. For $k>1$, the magmas $\mathfrak{S}$ are not semigroups and quasigroups. An element-by-element description of all magmas $\mathfrak{S}$ subsystems is given. It was found that all the magmas $\mathfrak{S}$ have subsystems that are semigroups. For $k>1$, subsystems that are idempotent nonunit semigroups are explicitly indicated. Previously, a description of an automorphism group was obtained for magmas $\mathfrak{S}$. In particular, every symmetric permutation group $S_k$ is isomorphic to the group of all automorphisms of a suitable magma $\mathfrak{S}$. In this paper, a general form of automorphism for a wider class of finite magmas of order $k+k^2 $ is obtained.
@article{ISU_2020_20_4_a4,
     author = {A. V. Litavrin},
     title = {Subsystems and automorphisms of some finite magmas of order $k+k^2$},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {457--467},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a4/}
}
TY  - JOUR
AU  - A. V. Litavrin
TI  - Subsystems and automorphisms of some finite magmas of order $k+k^2$
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2020
SP  - 457
EP  - 467
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a4/
LA  - ru
ID  - ISU_2020_20_4_a4
ER  - 
%0 Journal Article
%A A. V. Litavrin
%T Subsystems and automorphisms of some finite magmas of order $k+k^2$
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2020
%P 457-467
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a4/
%G ru
%F ISU_2020_20_4_a4
A. V. Litavrin. Subsystems and automorphisms of some finite magmas of order $k+k^2$. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 4, pp. 457-467. http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a4/

[1] Bourbaki N., Elements de Mathematique Algebre, Chapitres 1 a 3, Springer Science Business Media, 2007, 636 pp. | MR

[2] Litavrin A. V., “Automorphisms of some magmas of order $k+ k^2$”, The Bulletin of the Irkutsk State University. Ser. Mathematics, 26 (2018), 47–61 (in Russian) | DOI | MR | Zbl

[3] Maltsev A. I., “On the multiplication of classes of algebraic systems”, Siberian Mathematical Journal, 8:2 (1967), 346–365 (in Russian) | MR

[4] Knyazev O. V., “On the groupoid of varieties of completely simple semigroups”, Soviet Math. (Iz. VUZ), 32:10 (1988), 1–12 | MR | Zbl

[5] Martynova T. A., “On the product of semigroup varieties”, Soviet Math. (Iz. VUZ), 32:1 (1988), 43–50 | MR | Zbl

[6] Martynov L. M., “On the multiplication of varieties of algebras”, Russian Math. (Iz. VUZ), 38:11 (1994), 50–55 | MR | Zbl

[7] Jones P. R., “Mal'cev products of varieties of completely regular semigroups”, J. Austral. Math. Soc., 42:2 (1987), 227–246 | DOI | MR | Zbl

[8] Day A., “Idempotents in the groupoid of all SP classes of lattices”, Canad. Math. Bull., 21:4 (1978), 499–501 | DOI | MR | Zbl

[9] Grätzer G., Kelly D., “Products of lattice varieties”, Algebra Universalis, 21:1 (1985), 33–45 | DOI | MR | Zbl

[10] Novikov B. V., “On decomposition of Moufang groupoids”, Quasigroups Related Systems, 16:1 (2008), 97–101 | MR | Zbl

[11] Belyavskaya G. B., Tabarov A. Kh., “Groupoids with the identity defining the commutative Moufang loops”, J. Math. Sci., 164:1 (2010), 21–25 | DOI | MR | Zbl

[12] Shcherbakov V. A., Tabarov A. Kh., Puskash D. I., “On congruences of groupoids closely connected with quasigroups”, J. Math. Sci., 163:6 (2009), 785–795 | DOI | MR

[13] Stepanova A. A., Trikashnaya N. V., “Abelian and Hamiltonian groupoids”, J. Math. Sci., 169:5 (2010), 671–679 | DOI | MR | Zbl

[14] Gluskin L. M., “Positional operatives”, Sbornik: Mathematics, 68(110):3 (1965), 444–472 (in Russian) | Zbl

[15] Davidov S. S., “On the Structure of Medial Divisible $n$-Ary Groupoids”, Math. Notes, 104:1 (2018), 29–38 | DOI | DOI | MR | Zbl

[16] Davidov S. S., “Free commutative medial $n$-ary groupoids”, Discrete Math. Appl., 25:4 (2015), 203–210 | DOI | DOI | MR | Zbl

[17] Davidov S. S., “On the solvability of the equational theory of commutative medial $n$-ary groupoids”, Discrete Math. Appl., 23:2 (2013), 125–143 | DOI | DOI | MR | MR | Zbl

[18] Gal'mak A. M., “On non-$n$-semiabelianism polyadic groupoids of special class”, Problems of Physics, Mathematics and Technology, 38:1 (2019), 31–39 (in Russian) | MR | Zbl

[19] Gal'mak A. M., “Permutability of elements in polyadic groupoids of special form”, Problems of Physics, Mathematics and Technology, 36:3 (2018), 70–75 (in Russian) | Zbl

[20] Nazarov M. N., “A Self-Induced Metric on Groupoids and its Application to the Analysis of Cellular Interactions in Biology”, J. Math. Sci., 206:5 (2015), 561–569 | DOI | MR | Zbl

[21] Katyshev S. Yu., Markov V. T., Nechaev A. A., “Application of non-associative groupoids to the realization of an open key distribution procedure”, Discrete Math. Appl., 25:1 (2015), 9–24 | DOI | DOI | MR | Zbl

[22] Baryshnikov A. V., Katyshev S. Yu., “Application of non-associative structures to the construction of public key distribution algorithms”, Mathematical Aspects of Cryptography, 9:4 (2018), 5–30 (in Russian) | DOI

[23] Markov V. T., Mikhalev A. V., Nechaev A. A., “Nonassociative algebraic structures in cryptography and coding”, Fundam. Prikl. Mat., 21:4 (2016), 99–124 (in Russian)

[24] Bredikhin D. A., “On Elasses of Groupoids of Relations with Diophantine Operations”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 13:4-2 (2013), 28–34 (in Russian) | DOI | Zbl

[25] Bredikhin D. A., “Identities of Groupoids of Relations With Operation of Cylindered Intersection”, Russian Math. (Iz. VUZ), 62:8 (2018), 9–16 | DOI | MR | Zbl

[26] Bredikhin D. A., “On bases of identities for varieties of groupoids of relations”, Chebyshevskii Sbornik, 19:1 (2018), 26–34 (in Russian) | DOI | MR | Zbl

[27] Gluskin L. M., “Automorphisms of semigroups of binary relations”, Mathematical notes of the Ural State University, 6 (1967), 44–54 (in Russian) | Zbl

[28] Gluskin L. M., “Automorphisms of multiplicative semigroups of matrix algebras”, Uspekhi Mat. Nauk, 11:1 (67) (1956), 199–206 (in Russian) | MR | Zbl

[29] Halezov E. A., “Automorphisms of matrix semigroups”, Soviet Mathematics Doklady, 96:2 (1954), 245–248 (in Russian) | MR

[30] Bunina E. I., Semenov P. P., “Automorphisms of the semigroup of invertible matrices with nonnegative elements over commutative partially ordered rings”, J. Math. Sci., 162:5 (2009), 633–655 | DOI | MR | MR | Zbl

[31] Khalezov E. A., “Automorphisms of primitive quasigroups”, Sbornik: Mathematics, 53(95):3 (1961), 329–342 (in Russian) | MR | Zbl

[32] Shmatkov V. D., “Isomorphisms and Automorphisms of Matrix Algebras Over Lattices”, J. Math. Sci., 211:3 (2015), 434–440 | DOI | MR | Zbl

[33] Il'inykh A. P., “Classification of finite groupoids with 2-transitive automorphism groups”, Russian Acad. Sci. Sb. Math., 82:1 (1995), 175–197 | MR | Zbl

[34] Ilinykh A. P., “Groupoids of order $q(q\pm1)/2$, $q=2r$ with automorphism group isomorphic to $SL(2,q)$”, Sib. Math. J., 36:6 (1995), 1159–1163 | DOI | MR | Zbl

[35] Litavrin A. V., “Automorphisms of some finite magmas with an order strictly less than the number $N(N+1)$ and a generating set of $N$ elements”, Herald of Tver State University. Ser. Applied Mathematics, 2019, no. 2, 70–87 (in Russian) | DOI

[36] Maltsev A. I., Algebraic systems, Nauka, M., 1970, 392 pp. (in Russian) | MR