), and it is also shown that if $\psi(x)\in L_p[0,1]$ ($1\le p\le2$), the formal solution is a generalized solution of the mixed problem.
@article{ISU_2020_20_4_a3,
author = {V. P. Kurdyumov and A. P. Khromov and V. A. Khalova},
title = {Mixed problem for a homogeneous wave equation with a nonzero initial velocity and a summable potential},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {444--456},
year = {2020},
volume = {20},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a3/}
}
TY - JOUR AU - V. P. Kurdyumov AU - A. P. Khromov AU - V. A. Khalova TI - Mixed problem for a homogeneous wave equation with a nonzero initial velocity and a summable potential JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2020 SP - 444 EP - 456 VL - 20 IS - 4 UR - http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a3/ LA - ru ID - ISU_2020_20_4_a3 ER -
%0 Journal Article %A V. P. Kurdyumov %A A. P. Khromov %A V. A. Khalova %T Mixed problem for a homogeneous wave equation with a nonzero initial velocity and a summable potential %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2020 %P 444-456 %V 20 %N 4 %U http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a3/ %G ru %F ISU_2020_20_4_a3
V. P. Kurdyumov; A. P. Khromov; V. A. Khalova. Mixed problem for a homogeneous wave equation with a nonzero initial velocity and a summable potential. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 4, pp. 444-456. http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a3/
[1] Krylov A. N., On Some Differential Equations of Mathematical Physics Having Applications in Engineering, GITTL, M.–L., 1950, 368 pp. (in Russian) | MR
[2] Chernyatin V. A., Justification of the Fourier Method in a Mixed Problem for Partial Differential Equations, Moscow Univ. Press, M., 1991, 112 pp. (in Russian)
[3] Burlutskaya M. S., Khromov A. P., “Resolvent approach in the Fourier method”, Dokl. Math., 90:2 (2014), 545–548 | DOI | DOI | MR | Zbl
[4] Khromov A. P., “Behavior of the formal solution to a mixed problem for the wave equation”, Comput. Math. and Math. Phys., 56:2 (2016), 243–255 | DOI | DOI | MR | Zbl
[5] Gurevich A. P., Kurdyumov V. P., Khromov A. P., “Justification of Fourier Method in a Mixed Problem for Wave Equation with Non-zero Velocity”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 16:1 (2016), 13–29 (in Russian) | DOI | MR | Zbl
[6] Kurdyumov V. P., Khromov A. P., Khalova V. A., “A Mixed Problem for a Wave Equation with a Nonzero Initial Velocity”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 18:2 (2018), 157–171 (in Russian) | DOI | MR | Zbl
[7] Khromov A. P., “Mixed problem for a homogeneous wave equation with a nonzero initial velocity”, Comput. Math. and Math. Phys., 58:9 (2018), 1531–1543 | DOI | DOI | MR | Zbl
[8] Khromov A. P., “On the convergence of the formal Fourier solution of the wave equation with a summable potential”, Comput. Math. and Math. Phys., 56:10 (2016), 1778–1792 | DOI | DOI | MR | Zbl
[9] Burlutskaya M. S., Khromov A. P., “Mixed problem for the wave equation with integrable potential in the case of two-point boundary conditions of distinct orders”, Diff. Equat., 53:4 (2017), 497–508 | DOI | MR | Zbl
[10] Naymark M. A., Linear Differential Operators, Nauka, M., 1969, 526 pp. (in Russian) | MR
[11] Rasulov M. L., The Method of Contour Integral, Nauka, M., 1964, 462 pp. (in Russian) | MR
[12] Vagabov A. I., Introduction to the Spectral Theory of Differential Operators, Izd-vo Rostovskogo universiteta, Rostov-na-Donu, 1994, 160 pp. (in Russian)
[13] Bari N. K., Trigonometric Series, Gos. izd-vo fiz.-mat. lit., M., 1961, 936 pp. (in Russian) | MR