Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2020_20_4_a2, author = {Ya. A. Kopylov}, title = {On some diagram assertions in preabelian and $P$-semi-abelian categories}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {434--443}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a2/} }
TY - JOUR AU - Ya. A. Kopylov TI - On some diagram assertions in preabelian and $P$-semi-abelian categories JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2020 SP - 434 EP - 443 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a2/ LA - en ID - ISU_2020_20_4_a2 ER -
%0 Journal Article %A Ya. A. Kopylov %T On some diagram assertions in preabelian and $P$-semi-abelian categories %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2020 %P 434-443 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a2/ %G en %F ISU_2020_20_4_a2
Ya. A. Kopylov. On some diagram assertions in preabelian and $P$-semi-abelian categories. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 4, pp. 434-443. http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a2/
[1] Kopylov Ya. A., Kuz'minov V. I., “On the Ker-Coker-sequence in a semiabelian category”, Siberian Math. J., 41:3 (2000), 509–517 | DOI | MR | Zbl
[2] Kopylov Ya. A., Kuz'minov V. I., “The Ker-Coker-sequence and its generalization in some classes of additive categories”, Siberian Math. J., 50:1 (2009), 86–95 | DOI | MR | Zbl
[3] Grandis M., “On the categorical foundations of homological and homotopical algebra”, Cah. Topol. Géom. Différ. Catég., 33:2 (1992), 135–175 | MR | Zbl
[4] Bucur I., Deleanu A., Introduction to the Theory of Categories and Functors, Interscience Publ., John Wiley Sons, Ltd., London–New York–Sydney, 1968, 224 pp. | MR
[5] Raĭkov D. A., “Semiabelian categories”, Soviet Math. Dokl., 10 (1969), 1242–1245
[6] Palamodov V. P., “Homological methods in the theory of locally convex spaces”, Russ. Math. Surv., 26:1 (1971), 1–64 | DOI | MR
[7] Nomura Y., “Induced morphisms for Lambek invariants of commutative squares”, Manuscr. Math., 4:3 (1971), 263–275 | DOI | MR | Zbl
[8] Eckmann B., Hilton P. J., “Exact couples in an abelian category”, J. Algebra, 3 (1966), 38–87 | DOI | MR | Zbl
[9] Kuz'minov V. I., Cherevikin A. Yu., “Semiabelian categories”, Siberian Math. J., 13:6 (1972), 895–902 | DOI | MR
[10] Yakovlev A. V., “Homological algebra in pre-Abelian categories”, J. Math. Sci., 19:1 (1982), 1060–1067 | DOI | Zbl
[11] Rump W., “Almost abelian categories”, Cah. Topol. Géom. Différ. Catég., 42:3 (2001), 163–225 | MR | Zbl
[12] Kopylov Ya. A., Wegner S.-A., “On the notion of a semi-abelian category in the sense of Palamodov”, Appl. Categor. Struct., 20 (2012), 531–541 | DOI | MR | Zbl
[13] Schneiders J.-P., Quasi-abelian categories and sheaves, Mémoires de la Société Mathématique de France, Ser. 2, 76, 1999, 144 pp. | DOI | MR
[14] Bonet J., Dierolf S., “The pullback for bornological and ultrabornological spaces”, Note Mat., 25:1 (2006), 63–67 | DOI | MR | Zbl
[15] Rump W., “A counterexample to Raĭkov's conjecture”, Bull. Lond. Math. Soc., 40:6 (2008), 985–994 | DOI | MR | Zbl
[16] Rump W., “Analysis of a problem of Raikov with applications to barreled and bornological spaces”, J. of Pure Appl. Algebra, 215:1 (2011), 44–52 | DOI | MR | Zbl
[17] Wengenroth J., “The Raikov conjecture fails for simple analytical reasons”, J. Pure Appl. Algebra, 216:7 (2012), 1700–1703 | DOI | MR | Zbl
[18] Kelly G. M., “Monomorphisms, epimorphisms, and pull-backs”, J. Austral. Math. Soc., 9 (1969), 124–142 | DOI | MR | Zbl
[19] Gelfand I. M., Manin Yu. I., Methods of Homological Algebra, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003, 372 pp. | DOI | MR | Zbl
[20] Kopylov Ya. A., Kuz'minov V. I., “Exactness of the cohomology sequence corresponding to a short exact sequence of complexes in a semiabelian category”, Siberian Adv. Math., 13:3 (2003), 72–80 | MR | Zbl
[21] Kopylov Ya. A., “Homology in $P$-semi-abelian categories”, Sci. Ser. A Math. Sci. (N.S.), 17 (2009), 105–114 | MR | Zbl
[22] Kopylov Ya. A., “On the homology sequence in a $P$-semi-abelian category”, Sib. Èlektron. Mat. Izv., 9 (2012), 190–200 | MR | Zbl
[23] Makarov B. M., “Some pathological properties of inductive limits of $B$-spaces”, Uspekhi Mat. Nauk, 18:3 (111) (1963), 171–178 (in Russian) | MR | Zbl