On some diagram assertions in preabelian and $P$-semi-abelian categories
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 4, pp. 434-443.

Voir la notice de l'article provenant de la source Math-Net.Ru

As is well known, many important additive categories in functional analysis and algebra are not abelian. Many classical diagram assertions valid in abelian categories fail in more general additive categories without additional assumptions concerning the properties of the morphisms of the diagrams under consideration. This in particular applies to the so-called Snake Lemma, or the Ker-Coker-sequence. We obtain a theorem about a diagram generalizing the classical situation of the Snake Lemma in the context of categories semi-abelian in the sense of Palamodov. It is also known that, already in $P$-semi-abelian categories, not all kernels (respectively, cokernels) are semi-stable, that is, stable under pushouts (respectively, pullbacks). We prove a proposition showing how non-semi-stable kernels and cokernels can arise in general preabelian categories.
@article{ISU_2020_20_4_a2,
     author = {Ya. A. Kopylov},
     title = {On some diagram assertions in preabelian and $P$-semi-abelian categories},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {434--443},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a2/}
}
TY  - JOUR
AU  - Ya. A. Kopylov
TI  - On some diagram assertions in preabelian and $P$-semi-abelian categories
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2020
SP  - 434
EP  - 443
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a2/
LA  - en
ID  - ISU_2020_20_4_a2
ER  - 
%0 Journal Article
%A Ya. A. Kopylov
%T On some diagram assertions in preabelian and $P$-semi-abelian categories
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2020
%P 434-443
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a2/
%G en
%F ISU_2020_20_4_a2
Ya. A. Kopylov. On some diagram assertions in preabelian and $P$-semi-abelian categories. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 4, pp. 434-443. http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a2/

[1] Kopylov Ya. A., Kuz'minov V. I., “On the Ker-Coker-sequence in a semiabelian category”, Siberian Math. J., 41:3 (2000), 509–517 | DOI | MR | Zbl

[2] Kopylov Ya. A., Kuz'minov V. I., “The Ker-Coker-sequence and its generalization in some classes of additive categories”, Siberian Math. J., 50:1 (2009), 86–95 | DOI | MR | Zbl

[3] Grandis M., “On the categorical foundations of homological and homotopical algebra”, Cah. Topol. Géom. Différ. Catég., 33:2 (1992), 135–175 | MR | Zbl

[4] Bucur I., Deleanu A., Introduction to the Theory of Categories and Functors, Interscience Publ., John Wiley Sons, Ltd., London–New York–Sydney, 1968, 224 pp. | MR

[5] Raĭkov D. A., “Semiabelian categories”, Soviet Math. Dokl., 10 (1969), 1242–1245

[6] Palamodov V. P., “Homological methods in the theory of locally convex spaces”, Russ. Math. Surv., 26:1 (1971), 1–64 | DOI | MR

[7] Nomura Y., “Induced morphisms for Lambek invariants of commutative squares”, Manuscr. Math., 4:3 (1971), 263–275 | DOI | MR | Zbl

[8] Eckmann B., Hilton P. J., “Exact couples in an abelian category”, J. Algebra, 3 (1966), 38–87 | DOI | MR | Zbl

[9] Kuz'minov V. I., Cherevikin A. Yu., “Semiabelian categories”, Siberian Math. J., 13:6 (1972), 895–902 | DOI | MR

[10] Yakovlev A. V., “Homological algebra in pre-Abelian categories”, J. Math. Sci., 19:1 (1982), 1060–1067 | DOI | Zbl

[11] Rump W., “Almost abelian categories”, Cah. Topol. Géom. Différ. Catég., 42:3 (2001), 163–225 | MR | Zbl

[12] Kopylov Ya. A., Wegner S.-A., “On the notion of a semi-abelian category in the sense of Palamodov”, Appl. Categor. Struct., 20 (2012), 531–541 | DOI | MR | Zbl

[13] Schneiders J.-P., Quasi-abelian categories and sheaves, Mémoires de la Société Mathématique de France, Ser. 2, 76, 1999, 144 pp. | DOI | MR

[14] Bonet J., Dierolf S., “The pullback for bornological and ultrabornological spaces”, Note Mat., 25:1 (2006), 63–67 | DOI | MR | Zbl

[15] Rump W., “A counterexample to Raĭkov's conjecture”, Bull. Lond. Math. Soc., 40:6 (2008), 985–994 | DOI | MR | Zbl

[16] Rump W., “Analysis of a problem of Raikov with applications to barreled and bornological spaces”, J. of Pure Appl. Algebra, 215:1 (2011), 44–52 | DOI | MR | Zbl

[17] Wengenroth J., “The Raikov conjecture fails for simple analytical reasons”, J. Pure Appl. Algebra, 216:7 (2012), 1700–1703 | DOI | MR | Zbl

[18] Kelly G. M., “Monomorphisms, epimorphisms, and pull-backs”, J. Austral. Math. Soc., 9 (1969), 124–142 | DOI | MR | Zbl

[19] Gelfand I. M., Manin Yu. I., Methods of Homological Algebra, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003, 372 pp. | DOI | MR | Zbl

[20] Kopylov Ya. A., Kuz'minov V. I., “Exactness of the cohomology sequence corresponding to a short exact sequence of complexes in a semiabelian category”, Siberian Adv. Math., 13:3 (2003), 72–80 | MR | Zbl

[21] Kopylov Ya. A., “Homology in $P$-semi-abelian categories”, Sci. Ser. A Math. Sci. (N.S.), 17 (2009), 105–114 | MR | Zbl

[22] Kopylov Ya. A., “On the homology sequence in a $P$-semi-abelian category”, Sib. Èlektron. Mat. Izv., 9 (2012), 190–200 | MR | Zbl

[23] Makarov B. M., “Some pathological properties of inductive limits of $B$-spaces”, Uspekhi Mat. Nauk, 18:3 (111) (1963), 171–178 (in Russian) | MR | Zbl