Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2020_20_4_a11, author = {E. A. Fedorova and A. A. Nazarov and M. P. Farkhadov}, title = {Asymptotic analysis of the {MM{\CYRR}{\CYRR}|M|1} retrial queue with negative calls under the heavy load condition}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {534--547}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a11/} }
TY - JOUR AU - E. A. Fedorova AU - A. A. Nazarov AU - M. P. Farkhadov TI - Asymptotic analysis of the MMРР|M|1 retrial queue with negative calls under the heavy load condition JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2020 SP - 534 EP - 547 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a11/ LA - ru ID - ISU_2020_20_4_a11 ER -
%0 Journal Article %A E. A. Fedorova %A A. A. Nazarov %A M. P. Farkhadov %T Asymptotic analysis of the MMРР|M|1 retrial queue with negative calls under the heavy load condition %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2020 %P 534-547 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a11/ %G ru %F ISU_2020_20_4_a11
E. A. Fedorova; A. A. Nazarov; M. P. Farkhadov. Asymptotic analysis of the MMРР|M|1 retrial queue with negative calls under the heavy load condition. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 4, pp. 534-547. http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a11/
[1] Kuznetsov D. Y., Nazarov A. A., “Analysis of a communication network governed by an adaptive random multiple access protocol in critical load”, Problems of Information Transmission, 40:3 (2004), 243–253 | DOI | MR | Zbl
[2] Tran-Gia P., Mandjes M., “Modeling of customer retrial phenomenon in cellular mobile networks”, IEEE Journal on Selected Areas in Communications, 15 (1997), 1406–1414 | DOI
[3] Roszik J., Sztrik J., Kim C. S., “Retrial queues in the performance modelling of cellular mobile networks using MOSEL”, I. J. of Simulation, 6:1–2 (2005), 38–47
[4] Kim C. S., Klimenok V., Dudin A., “Analysis and optimization of guard channel policy in cellular mobile networks with account of retrials”, Computers and Operation Research, 43 (2014), 181–190 | DOI | MR | Zbl
[5] Artalejo J. R., Gómez-Corral A., Retrial Queueing Systems. A Computational Approach, Springer, Berlin, 2008, 267 pp. | DOI | MR | Zbl
[6] Falin G. I., Templeton J. G. C., Retrial queues, Chapman Hall, L., 1997, 328 pp. | Zbl
[7] Gelenbe E., “Random neural networks with positive and negative signals and product form solution”, Neural Computation, 1:4 (1989), 502–511 | DOI | MR
[8] Gelenbe E., “Product-form queueing networks with negative and positive customers”, Journal of Applied Probability, 28 (1991), 656–663 | DOI | MR | Zbl
[9] Do T. V., “Bibliography on G-networks, negative customers and applications”, Mathematical and Computer Modelling, 53:1–2 (2011), 205–212 | DOI
[10] Shin Y. W., “Multi-server retrial queue with negative customers and disasters”, Queueing Systems, 55:4 (2007), 223–237 | DOI | MR | Zbl
[11] Anisimov V. V., Artalejo J. R., “Analysis of Markov multiserver retrial queues with negative arrivals”, Queueing Systems, 39:2/3 (2001), 157–182 | DOI | MR | Zbl
[12] Berdjoudj L., Aissani D., “Martingale methods for analyzing the M/M/1 retrial queue with negative arrivals”, Journal of Mathematical Sciences, 131:3 (2005), 5595–5599 | DOI | MR | Zbl
[13] Wu J., Lian Z., “A single-server retrial G-queue with priority and unreliable server under Bernoulli vacation schedule”, Computers Industrial Engineering, 64:1 (2013), 84–93 | DOI | MR
[14] Kirupa K., Udaya Chandrika K., “Batch arrival retrial queue with negative customers, multi-optional service and feedback”, Communications on Applied Electronics, 2:4 (2015), 14–18 | DOI
[15] Klimenok V. I., Dudin A. N., “A BMAP/PH/N queue with negative customers and partial protection of service”, Communications in Statistics — Simulation and Computation, 41:7 (2012), 1062–1082 | DOI | MR | Zbl
[16] Dimitriou I., “A mixed priority retrial queue with negative arrivals, unreliable server and multiple vacations”, Applied Mathematical Modelling, 37:3 (2013), 1295–1309 | DOI | MR | Zbl
[17] Rajadurai P., “A study on M/G/1 retrial queueing system with three different types of customers under working vacation policy”, International Journal of Mathematical Modelling and Numerical Optimisation (IJMMNO), 8:4 (2018), 393–417 | DOI | MR
[18] Zidani N., Djellab N., “On the multiserver retrial queues with negative arrivals”, International Journal of Mathematics in Operational Research (IJMOR), 13:2 (2018), 219–242 | DOI | MR | Zbl
[19] Bertsekas D., Gallager R., Information transmission networks, Mir, M., 1989, 544 pp. (in Russian)
[20] Bljek Ju., Networks: protocols, standards, interfaces, Mir, M., 1990, 510 pp. (in Russian)
[21] Gómez-Corral A., “A bibliographical guide to the analysis of retrial queues through matrix analytic techniques”, Annals of Operations Research, 141:1 (2006), 163–191 | DOI | MR
[22] Kim C. S., Mushko V. V., Dudin A. N., “Computation of the steady state distribution for multi-server retrial queues with phase type service process”, Annals of Operations Research, 201:1 (2012), 307–323 | DOI | MR | Zbl
[23] Artalejo J. R., Pozo M., “Numerical calculation of the stationary distribution of the main multiserver retrial queue”, Annals of Operations Research, 116:1–4 (2002), 41–56 | DOI | MR | Zbl
[24] Ridder A., “Fast simulation of retrial queues”, Third Workshop on Rare Event Simulation and Related Combinatorial Optimization Problems (Piza, 2000), 1–5 | MR | Zbl
[25] Moiseev A., Nazarov A., “Queueing network MAP$-(GI/\infty)^K$ with high-rate arrivals”, European Journal of Operational Research, 254:1 (2016), 161–168 | DOI | MR | Zbl
[26] Nazarov A. A., Fedorova E. A., “Retrial queuing system MMPP|GI|1 researching by means of the second-order asymptotic analysis method under a heavy load condition”, Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 325:5 (2014), 6–15 (in Russian)
[27] Lisovskaja E. Ju., Moiseeva S. P., “Asymptotical analysis of a non-Markovian queueing system with renewal input process and random capacity of customers”, Tomsk State University Journal of Control and Computer Science, 2017, no. 39, 30–38 (in Russian) | DOI
[28] Moiseev A., Demin A., Dorofeev V., Sorokin V., “Discrete-event approach to simulation of queueing networks”, Key Engineering Materials, 685 (2016), 939–942 | DOI