Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2020_20_4_a1, author = {O. V. Kamozina}, title = {$\Omega\zeta$-foliated {Fitting} classes}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {424--433}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a1/} }
O. V. Kamozina. $\Omega\zeta$-foliated Fitting classes. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 4, pp. 424-433. http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a1/
[1] Gaschütz W., “Zur Theorie der endlichen auflösbaren Gruppen”, Math. Zeitschrift, 80:4 (1963), 300–305 (in Germany) | MR | Zbl
[2] Hartley V., “On Fischer's dualization of formation theory”, Proc. London Math. Soc., 3:2 (1969), 193–207 | DOI | MR | Zbl
[3] Shemetkov L. A., Finite group formations, Nauka, M., 1978, 272 pp. (in Russian) | MR
[4] Doerk K., Nawkes T., Finite soluble groups, Walter de Gruyter, Berlin–N. Y., 1992, 892 pp. | MR
[5] Skiba A. N., Shemetkov L. A., “Multiply $\omega$-local formations and Fitting classes of finite groups”, Siberian Adv. Math., 10:2 (2000), 112–141 | MR | MR | Zbl | Zbl
[6] Vedernikov V. A., Sorokina M. M., “$\Omega$-foliated formations and Fitting classes of finite groups”, Discrete Math. Appl., 11:5 (2001), 507–527 | DOI | MR | Zbl
[7] Skachkova Yu. A., “Lattices of $\Omega$-fibered formations”, Discrete Math. Appl., 12:3 (2002), 269–278 | DOI | MR | Zbl
[8] Egorova V. E., “Critical non-singly-generated totally canonical Fitting classes of finite groups”, Math. Notes, 83:4 (2008), 478–484 | DOI | DOI | MR | Zbl
[9] Vedernikov V. A., Demina E. N., “$\Omega$-foliated formations of multioperator $T$-groups”, Siberian Math. J., 51:5 (2010), 789–804 | DOI | MR | Zbl
[10] Kamozina O. V., “Algebraic lattices of multiply $\Omega$-foliated Fitting classes”, Discrete Math. Appl., 16:3 (2006), 299–305 | DOI | DOI | MR | Zbl
[11] Skiba A. N., “On one generalization of the local formations”, Problems of Physics, Mathematics and Technics, 2018, no. 1 (34), 79–82 | Zbl