$\Omega\zeta$-foliated Fitting classes
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 4, pp. 424-433.

Voir la notice de l'article provenant de la source Math-Net.Ru

All groups under consideration are assumed to be finite. For a nonempty subclass of $\Omega$ of the class of all simple groups $\frak I$ and the partition $\zeta =\{\zeta_i\mid i\in I\}$, where $\zeta_i$ is a nonempty subclass of the class $\frak I$, $\frak I =\cup_ {i\in I}\zeta _i$ and $\zeta_i \cap \zeta_j = \varnothing$ for all $i\not = j$, $\Omega\zeta R$-function $f$ and $\Omega\zeta FR$-function $\varphi$ are introduced. The domain of these functions is the set $\Omega\zeta\cup \{\Omega '\}$, where $\Omega\zeta =\{\Omega\cap\zeta_i\mid\Omega\cap\zeta_i\not =\varnothing\}$, $\Omega '=\frak I\setminus\Omega$. The scope of these function values is the set of Fitting classes and the set of nonempty Fitting formations, respectively. The functions $f$ and $\varphi$ are used to determine the $\Omega\zeta$-foliated Fitting class $\frak F=\Omega\zeta R(f,\varphi )=(G: O^\Omega (G)\in f(\Omega' )$ and $G^{\varphi (\Omega\cap\zeta_i )}\in f(\Omega\cap\zeta_i )$ for all $\Omega\cap\zeta_i \in\Omega\zeta (G))$ with $\Omega\zeta$-satellite $f$ and $\Omega\zeta$-direction $\varphi$. The paper gives examples of $\Omega\zeta$-foliated Fitting classes. Two types of $\Omega\zeta$-foliated Fitting classes are defined: $\Omega\zeta$-free and $\Omega\zeta$-canonical Fitting classes. Their directions are indicated by $\varphi_0$ and $\varphi_1$ respectively. It is shown that each non-empty non-identity Fitting class is a $\Omega\zeta$-free Fitting class for some non-empty class $\Omega\subseteq\frak I$ and any partition $\zeta$. A series of properties of $\Omega\zeta$-foliated Fitting classes is obtained. In particular, the definition of internal {$\Omega\zeta$-sa}tellite is given and it is shown that every $\Omega\zeta$-foliated Fitting class has an internal $\Omega\zeta$-satellite. For $\Omega=\frak I$, the concept of a $\zeta$-foliated Fitting class is introduced. The connection conditions between $\Omega\zeta$-foliated and $\zeta$-foliated Fitting classes are shown.
@article{ISU_2020_20_4_a1,
     author = {O. V. Kamozina},
     title = {$\Omega\zeta$-foliated {Fitting} classes},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {424--433},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a1/}
}
TY  - JOUR
AU  - O. V. Kamozina
TI  - $\Omega\zeta$-foliated Fitting classes
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2020
SP  - 424
EP  - 433
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a1/
LA  - ru
ID  - ISU_2020_20_4_a1
ER  - 
%0 Journal Article
%A O. V. Kamozina
%T $\Omega\zeta$-foliated Fitting classes
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2020
%P 424-433
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a1/
%G ru
%F ISU_2020_20_4_a1
O. V. Kamozina. $\Omega\zeta$-foliated Fitting classes. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 4, pp. 424-433. http://geodesic.mathdoc.fr/item/ISU_2020_20_4_a1/

[1] Gaschütz W., “Zur Theorie der endlichen auflösbaren Gruppen”, Math. Zeitschrift, 80:4 (1963), 300–305 (in Germany) | MR | Zbl

[2] Hartley V., “On Fischer's dualization of formation theory”, Proc. London Math. Soc., 3:2 (1969), 193–207 | DOI | MR | Zbl

[3] Shemetkov L. A., Finite group formations, Nauka, M., 1978, 272 pp. (in Russian) | MR

[4] Doerk K., Nawkes T., Finite soluble groups, Walter de Gruyter, Berlin–N. Y., 1992, 892 pp. | MR

[5] Skiba A. N., Shemetkov L. A., “Multiply $\omega$-local formations and Fitting classes of finite groups”, Siberian Adv. Math., 10:2 (2000), 112–141 | MR | MR | Zbl | Zbl

[6] Vedernikov V. A., Sorokina M. M., “$\Omega$-foliated formations and Fitting classes of finite groups”, Discrete Math. Appl., 11:5 (2001), 507–527 | DOI | MR | Zbl

[7] Skachkova Yu. A., “Lattices of $\Omega$-fibered formations”, Discrete Math. Appl., 12:3 (2002), 269–278 | DOI | MR | Zbl

[8] Egorova V. E., “Critical non-singly-generated totally canonical Fitting classes of finite groups”, Math. Notes, 83:4 (2008), 478–484 | DOI | DOI | MR | Zbl

[9] Vedernikov V. A., Demina E. N., “$\Omega$-foliated formations of multioperator $T$-groups”, Siberian Math. J., 51:5 (2010), 789–804 | DOI | MR | Zbl

[10] Kamozina O. V., “Algebraic lattices of multiply $\Omega$-foliated Fitting classes”, Discrete Math. Appl., 16:3 (2006), 299–305 | DOI | DOI | MR | Zbl

[11] Skiba A. N., “On one generalization of the local formations”, Problems of Physics, Mathematics and Technics, 2018, no. 1 (34), 79–82 | Zbl