Ternary discrete wavelet basis
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 3, pp. 367-377.

Voir la notice de l'article provenant de la source Math-Net.Ru

The discrete version and the basic construction of the ternary multiresolution analysis are given, similar to the binary model case of the Haar multiresolution analysis. Based on the constructed basis, an algorithm similar to the fast Haar transformation is proposed. Typical calculation examples are provided.
@article{ISU_2020_20_3_a7,
     author = {M. S. Bespalov},
     title = {Ternary discrete wavelet basis},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {367--377},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a7/}
}
TY  - JOUR
AU  - M. S. Bespalov
TI  - Ternary discrete wavelet basis
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2020
SP  - 367
EP  - 377
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a7/
LA  - ru
ID  - ISU_2020_20_3_a7
ER  - 
%0 Journal Article
%A M. S. Bespalov
%T Ternary discrete wavelet basis
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2020
%P 367-377
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a7/
%G ru
%F ISU_2020_20_3_a7
M. S. Bespalov. Ternary discrete wavelet basis. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 3, pp. 367-377. http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a7/

[1] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Wavelet theory, Fizmatlit, M., 2005, 616 pp. (in Russian) | MR

[2] S. M. Masharsky, V. N. Malozemov, “Haar spectra of discrete convolutions”, Comput. Math. Math. Phys., 40:6 (2000), 914–921 | MR

[3] M. G. Ber, V. N. Malozemov, “The best formulae for the approximate computation of discrete Fourier transforms”, Comput. Math. Math. Phys., 32:11 (1992), 1533–1544 | MR | Zbl

[4] M. S. Bespalov, “Bernoulli's discrete periodic functions”, Applied Discrete Mathematics, 2019, no. 43, 16–36 | DOI

[5] V. N. Malozemov, S. M. Macharskiy, Basics of Discrete Harmonic Analysis, Lane, St. Petersburg, 2012, 304 pp. (in Russian)

[6] M. S. Bespalov, V. A. Sklyarenko, Discrete Walsh Functions and its Applications, Vladimirskiy gosudarstvennyi universitet, Vladimir, 2014, 68 pp. (in Russian)

[7] Yu. A. Farkov, “Orthogonal Wavelets on Locally Compact Abelian Groups”, Funct. Anal. Appl., 31:4 (1997), 294–296 | DOI | DOI | MR | Zbl

[8] W. C. Lang, “Wavelet analysis on the Cantor dyadic group”, Housten J. Math., 24:3 (1998), 533–544 | MR | Zbl

[9] S. F. Lukomskii, “Multiresolution analysis on zero-dimensional Abelian groups and wavelets bases”, Sb. Math., 201:5 (2010), 669–691 | DOI | DOI | MR | Zbl

[10] E. A. Pleshcheva, N. I. Chernykh, “Construction of orthogonal multiwavelet bases”, Proc. Steklov Inst. Math., 288, Suppl. 1 (2015), 162–172 | DOI

[11] Yu. A. Farkov, S. A. Stroganov, “The use of discrete dyadic wavelets in image processing”, Russian Math. (Iz. VUZ), 55:7 (2011), 47–55 | DOI | MR | Zbl

[12] A. A. Barichev, D. S. Lukomskii, S. F. Lukomskii, “Systems of Scales and Shifts in the Problem Still Image Compression”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 14:4-2 (2014), 505–510 (in Russian) | DOI | Zbl

[13] I. Daubechies, Ten Lestures on Wavelets, CBMS-NSR Series in Appl. Math., SIAM, 1992, 454 pp. | MR

[14] M. S. Bespalov, “Discrete Chrestenson transform”, Probl. Inform. Transm., 46:4 (2010), 353–375 | DOI | MR | MR | Zbl

[15] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, Nauka, M., 1976, 544 pp. (in Russian) | MR