Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2020_20_3_a7, author = {M. S. Bespalov}, title = {Ternary discrete wavelet basis}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {367--377}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a7/} }
M. S. Bespalov. Ternary discrete wavelet basis. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 3, pp. 367-377. http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a7/
[1] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Wavelet theory, Fizmatlit, M., 2005, 616 pp. (in Russian) | MR
[2] S. M. Masharsky, V. N. Malozemov, “Haar spectra of discrete convolutions”, Comput. Math. Math. Phys., 40:6 (2000), 914–921 | MR
[3] M. G. Ber, V. N. Malozemov, “The best formulae for the approximate computation of discrete Fourier transforms”, Comput. Math. Math. Phys., 32:11 (1992), 1533–1544 | MR | Zbl
[4] M. S. Bespalov, “Bernoulli's discrete periodic functions”, Applied Discrete Mathematics, 2019, no. 43, 16–36 | DOI
[5] V. N. Malozemov, S. M. Macharskiy, Basics of Discrete Harmonic Analysis, Lane, St. Petersburg, 2012, 304 pp. (in Russian)
[6] M. S. Bespalov, V. A. Sklyarenko, Discrete Walsh Functions and its Applications, Vladimirskiy gosudarstvennyi universitet, Vladimir, 2014, 68 pp. (in Russian)
[7] Yu. A. Farkov, “Orthogonal Wavelets on Locally Compact Abelian Groups”, Funct. Anal. Appl., 31:4 (1997), 294–296 | DOI | DOI | MR | Zbl
[8] W. C. Lang, “Wavelet analysis on the Cantor dyadic group”, Housten J. Math., 24:3 (1998), 533–544 | MR | Zbl
[9] S. F. Lukomskii, “Multiresolution analysis on zero-dimensional Abelian groups and wavelets bases”, Sb. Math., 201:5 (2010), 669–691 | DOI | DOI | MR | Zbl
[10] E. A. Pleshcheva, N. I. Chernykh, “Construction of orthogonal multiwavelet bases”, Proc. Steklov Inst. Math., 288, Suppl. 1 (2015), 162–172 | DOI
[11] Yu. A. Farkov, S. A. Stroganov, “The use of discrete dyadic wavelets in image processing”, Russian Math. (Iz. VUZ), 55:7 (2011), 47–55 | DOI | MR | Zbl
[12] A. A. Barichev, D. S. Lukomskii, S. F. Lukomskii, “Systems of Scales and Shifts in the Problem Still Image Compression”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 14:4-2 (2014), 505–510 (in Russian) | DOI | Zbl
[13] I. Daubechies, Ten Lestures on Wavelets, CBMS-NSR Series in Appl. Math., SIAM, 1992, 454 pp. | MR
[14] M. S. Bespalov, “Discrete Chrestenson transform”, Probl. Inform. Transm., 46:4 (2010), 353–375 | DOI | MR | MR | Zbl
[15] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, Nauka, M., 1976, 544 pp. (in Russian) | MR