Ternary discrete wavelet basis
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 3, pp. 367-377

Voir la notice de l'article provenant de la source Math-Net.Ru

The discrete version and the basic construction of the ternary multiresolution analysis are given, similar to the binary model case of the Haar multiresolution analysis. Based on the constructed basis, an algorithm similar to the fast Haar transformation is proposed. Typical calculation examples are provided.
@article{ISU_2020_20_3_a7,
     author = {M. S. Bespalov},
     title = {Ternary discrete wavelet basis},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {367--377},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a7/}
}
TY  - JOUR
AU  - M. S. Bespalov
TI  - Ternary discrete wavelet basis
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2020
SP  - 367
EP  - 377
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a7/
LA  - ru
ID  - ISU_2020_20_3_a7
ER  - 
%0 Journal Article
%A M. S. Bespalov
%T Ternary discrete wavelet basis
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2020
%P 367-377
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a7/
%G ru
%F ISU_2020_20_3_a7
M. S. Bespalov. Ternary discrete wavelet basis. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 3, pp. 367-377. http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a7/