Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2020_20_3_a5, author = {V. A. Yurko}, title = {On determination of functional-differential pencils on closed sets from the {Weyl-type} function}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {343--350}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a5/} }
TY - JOUR AU - V. A. Yurko TI - On determination of functional-differential pencils on closed sets from the Weyl-type function JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2020 SP - 343 EP - 350 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a5/ LA - en ID - ISU_2020_20_3_a5 ER -
%0 Journal Article %A V. A. Yurko %T On determination of functional-differential pencils on closed sets from the Weyl-type function %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2020 %P 343-350 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a5/ %G en %F ISU_2020_20_3_a5
V. A. Yurko. On determination of functional-differential pencils on closed sets from the Weyl-type function. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 3, pp. 343-350. http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a5/
[1] M. Bohner, A. Peterson, Dynamic Equations on Time Scales, Birkhäuser, Boston, MA, 2001, 358 pp. | DOI | MR | Zbl
[2] G. Freiling, V. A. Yurko, Inverse Sturm Liouville Problems and Their Applications, NOVA Science Publ. Inc., New York, 2001, 305 pp. | MR | Zbl
[3] V. A. Yurko, Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2002, 316 pp. | MR | Zbl
[4] M. G. Gasymov, G. S. Gusejnov, “Determination of diffusion operators from the spectral data”, DAN Azer. SSR, 37:2 (1981), 19–23 | MR | Zbl
[5] V. A. Yurko, “Boundary value problems with a parameter in the boundary conditions”, Soviet J. Contemporary Math. Anal., 19:5 (1984), 62–73 | MR | Zbl
[6] V. A. Yurko, “An inverse problem for pencils of differential operators”, Sb. Math., 191:10 (2000), 1561–1586 | DOI | MR | Zbl
[7] I. M. Nabiev, “Inverse spectral problem for the diffusion operator on an interval”, Mat. Fiz. Anal. Geom., 11:3 (2004), 302–313 | MR | Zbl
[8] I. Guseinov, I. Nabiev, “The inverse spectral problem for pencils of differential operators”, Sb. Math., 198:11 (2007), 1579–1598 | DOI | MR | Zbl
[9] S. A. Buterin, V. A. Yurko, “Inverse problems for second-order differential pencils with Dirichlet boundary conditions”, J. Inverse Ill-Posed Probl., 20:5-6 (2012), 855–881 | DOI | MR | Zbl
[10] V. A. Yurko, “Inverse problems for non-selfadjoint quasi-periodic differential pencils”, Anal. Math. Phys., 2:3 (2012), 215–230 | DOI | MR | Zbl
[11] V. A. Yurko, “Inverse problems for Sturm Liouville differential operators on closed sets”, Tamkang Journal of Mathematics, 50:3 (2019), 199–206 | DOI | MR | Zbl