Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2020_20_3_a3, author = {E. H. Khalilov}, title = {On the approximate solution of a class of weakly singular integral equations}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {310--325}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a3/} }
TY - JOUR AU - E. H. Khalilov TI - On the approximate solution of a class of weakly singular integral equations JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2020 SP - 310 EP - 325 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a3/ LA - ru ID - ISU_2020_20_3_a3 ER -
%0 Journal Article %A E. H. Khalilov %T On the approximate solution of a class of weakly singular integral equations %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2020 %P 310-325 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a3/ %G ru %F ISU_2020_20_3_a3
E. H. Khalilov. On the approximate solution of a class of weakly singular integral equations. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 3, pp. 310-325. http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a3/
[1] F. A. Abdullayev, E. H. Khalilov, “Constructive method for solving the external Neumann boundary-value problem for the Helmholtz equation”, Proceedings of IMM of NAS of Azerbaijan, 44:1 (2018), 62–69 | MR | Zbl
[2] J. Bremer, Z. Gimbutas, “A Nystrom method for weakly singular integral operators on surfaces”, J. Comput. Phys., 231:14 (2012), 4885–4903 | DOI | MR | Zbl
[3] O. Gonzalez, J. Li, “A convergence theorem for a class of Nystrom methods for weakly singular integral equations on surfaces in $\mathbb{R}^3$”, Mathematics of Computation, 84:292 (2015), 675–714 | DOI | MR | Zbl
[4] I. G. Graham, I. H. Sloan, “Fully discrete spectral boundary integral methods for Helmholtz problems on smooth closed surfaces in $\mathbb{R}^3$”, Numer. Math., 92:2 (2002), 289–323 | DOI | MR | Zbl
[5] P. J. Harris, K. Chen, “On efficient preconditioners for iterative solution of a Galerkin boundary element equation for the three-dimensional exterior Helmholtz problem”, J. Comput. Appl. Math., 156:2 (2003), 303–318 | DOI | MR | Zbl
[6] R. Kress, “Boundary integral equations in time-harmonic acoustic scattering”, Math. Comput. Modelling, 15:3-5 (1991), 229–243 | DOI | MR | Zbl
[7] T. Cai, “A fast solver for a hypersingular boundary integral equation”, Appl. Numer. Math., 59 (2009), 1960–1969 | DOI | MR | Zbl
[8] L. Farina, P. A. Martinc, V. Peron, “Hypersingular integral equations over a disc: Convergence of a spectral method and connection with Tranter's method”, J. Comput. Appl. Math., 269 (2014), 118–131 | DOI | MR | Zbl
[9] E. H. Khalilov, “Constructive Method for Solving a Boundary Value Problem with Impedance Boundary Condition for the Helmholtz Equation”, Differ. Equ., 54:4 (2018), 539–550 | DOI | DOI | MR | Zbl
[10] R. Kress, “A collocation method for a hypersingular boundary integral equation via trigonometric differentiation”, J. Integral Equations Applications, 26:2 (2014), 197–213 | DOI | MR | Zbl
[11] I. K. Lifanov, S. L. Stavtsev, “Integral equations and sound propagation in a shallow sea”, Differ. Equ., 40:9 (2004), 1330–1344 | DOI | MR | Zbl
[12] V. S. Vladimirov, Equations of mathematical physics, Marcel Dekker Inc., New York, 1971, 426 pp. | MR | MR | Zbl
[13] G. M. Vainikko, “Regular convergence of operators and approximate solution of equations”, Journal of Soviet Mathematics, 15:6 (1981), 675–705 | DOI | MR | Zbl
[14] D. L. Colton, R. Kress, Integral equation methods in scattering theory, John Wiley and Sons, 1983, 271 pp. | MR | Zbl
[15] E. H. Khalilov, “Some properties of the operators generated by a derivative of the acoustic double layer potential”, Sib. Math. J., 55:3 (2014), 564–573 | DOI | MR | Zbl