On customary spaces of Leibniz--Poisson algebras
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 3, pp. 290-296.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be a base field of characteristic zero. It is well known that in this case all information about varieties of linear algebras $\bf{V}$ contains in its polylinear components $P_n(\bf{V})$, $n \in \mathbb{N}$, where $P_n(\bf{V})$ is a linear span of polylinear words of $n$ different letters in a free algebra $K(X,\bf{V})$. D. Farkas defined customary polynomials and proved that every Poisson PI-algebra satisfies some customary identity. Poisson algebras are special case of Leibniz–Poisson algebras. In the paper the sequence of customary spaces of the free Leibniz–Poisson algebra $\{Q_{2n}\}_{n\geq 1}$ is investigated. The basis and dimension of spaces $Q_ {2n}$ are given. It is also proved that in case of a base field of characteristic zero any nontrivial identity of the free Leibniz–Poisson algebra has nontrivial identities in customary spaces.
@article{ISU_2020_20_3_a1,
     author = {S. M. Ratseev and O. I. Cherevatenko},
     title = {On customary spaces of {Leibniz--Poisson} algebras},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {290--296},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a1/}
}
TY  - JOUR
AU  - S. M. Ratseev
AU  - O. I. Cherevatenko
TI  - On customary spaces of Leibniz--Poisson algebras
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2020
SP  - 290
EP  - 296
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a1/
LA  - ru
ID  - ISU_2020_20_3_a1
ER  - 
%0 Journal Article
%A S. M. Ratseev
%A O. I. Cherevatenko
%T On customary spaces of Leibniz--Poisson algebras
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2020
%P 290-296
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a1/
%G ru
%F ISU_2020_20_3_a1
S. M. Ratseev; O. I. Cherevatenko. On customary spaces of Leibniz--Poisson algebras. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 3, pp. 290-296. http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a1/

[1] S. M. Ratseev, “Numerical characteristics of varieties of Poisson algebras”, J. Math. Sci., 237:2 (2019), 304–322 | DOI | MR | Zbl

[2] S. M. Ratseev, O. I. Cherevatenko, “Numerical characteristics of Leibniz–Poisson algebras”, Chebyshevskii Sbornik, 18:1 (2017), 143–159 (in Russian) | MR | Zbl

[3] Yu. A. Bahturin, Identical relations in Lie algebras, VNU Science Press, Utrecht, 1987, 310 pp. | MR | MR | Zbl

[4] A. Giambruno, M. V. Zaicev, Polynomial Identities and Asymptotic Methods, AMS Mathematical Surveys and Monographs, 122, Providence R.I., 2005, 352 pp. | DOI | MR | Zbl

[5] V. Drensky, Free algebras and PI-algebras: Graduate course in algebra, Springer-Verlag, Singapore, 2000, 271 pp. | MR | Zbl

[6] S. P. Mishchenko, V. M. Petrogradsky, A. Regev, “Poisson PI algebras”, Trans. Amer. Math. Soc., 359:10 (2007), 4669–4694 | DOI | MR | Zbl

[7] D. R. Farkas, “Poisson polynomial identities”, Comm. Algebra, 26:2 (1998), 401–416 | DOI | MR | Zbl

[8] D. R. Farkas, “Poisson polynomial identities II”, Arch. Math., 72:4 (1999), 252–260 | DOI | MR | Zbl

[9] I. Kaygorodov, “Algebras of Jordan brackets and generalized Poisson algebras”, Linear and Multilinear Algebra, 65:6 (2017), 1142–1157 | DOI | MR | Zbl

[10] P. Kolesnikov, L. Makar-Limanov, I. Shestakov, “The Freiheitssatz for generic Poisson algebras”, SIGMA, 10 (2014), 115, 15 pp. | DOI | MR | Zbl