On customary spaces of Leibniz--Poisson algebras
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 3, pp. 290-296

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be a base field of characteristic zero. It is well known that in this case all information about varieties of linear algebras $\bf{V}$ contains in its polylinear components $P_n(\bf{V})$, $n \in \mathbb{N}$, where $P_n(\bf{V})$ is a linear span of polylinear words of $n$ different letters in a free algebra $K(X,\bf{V})$. D. Farkas defined customary polynomials and proved that every Poisson PI-algebra satisfies some customary identity. Poisson algebras are special case of Leibniz–Poisson algebras. In the paper the sequence of customary spaces of the free Leibniz–Poisson algebra $\{Q_{2n}\}_{n\geq 1}$ is investigated. The basis and dimension of spaces $Q_ {2n}$ are given. It is also proved that in case of a base field of characteristic zero any nontrivial identity of the free Leibniz–Poisson algebra has nontrivial identities in customary spaces.
@article{ISU_2020_20_3_a1,
     author = {S. M. Ratseev and O. I. Cherevatenko},
     title = {On customary spaces of {Leibniz--Poisson} algebras},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {290--296},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a1/}
}
TY  - JOUR
AU  - S. M. Ratseev
AU  - O. I. Cherevatenko
TI  - On customary spaces of Leibniz--Poisson algebras
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2020
SP  - 290
EP  - 296
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a1/
LA  - ru
ID  - ISU_2020_20_3_a1
ER  - 
%0 Journal Article
%A S. M. Ratseev
%A O. I. Cherevatenko
%T On customary spaces of Leibniz--Poisson algebras
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2020
%P 290-296
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a1/
%G ru
%F ISU_2020_20_3_a1
S. M. Ratseev; O. I. Cherevatenko. On customary spaces of Leibniz--Poisson algebras. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 3, pp. 290-296. http://geodesic.mathdoc.fr/item/ISU_2020_20_3_a1/