Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2020_20_2_a9, author = {E. E. Ivanko and S. M. Chervinsky}, title = {Survival rate of model populations depending on the strategy of energy exchange between the organisms}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {241--256}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a9/} }
TY - JOUR AU - E. E. Ivanko AU - S. M. Chervinsky TI - Survival rate of model populations depending on the strategy of energy exchange between the organisms JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2020 SP - 241 EP - 256 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a9/ LA - ru ID - ISU_2020_20_2_a9 ER -
%0 Journal Article %A E. E. Ivanko %A S. M. Chervinsky %T Survival rate of model populations depending on the strategy of energy exchange between the organisms %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2020 %P 241-256 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a9/ %G ru %F ISU_2020_20_2_a9
E. E. Ivanko; S. M. Chervinsky. Survival rate of model populations depending on the strategy of energy exchange between the organisms. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 2, pp. 241-256. http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a9/
[1] Lorenz E. N., “Deterministic nonperiodic flow”, Journal of the Atmospheric Sciences, 20:2 (1963), 130–141 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[2] Bak P., Tang C., Wiesenfeld K., “Self-organized criticality: An explanation of the 1/f noise”, Phys. Rev. Lett., 59:4 (1987), 381–384 | DOI | MR
[3] May R., “Simple mathematical models with very complicated dynamics”, Nature, 261:5560 (1976), 459–467 | DOI | Zbl
[4] Collier N., “RePast: An extensible framework for agent simulation”, Natural Resources and Environmental Issues, 8 (2001), 4 (accessed 7 March 2019) https://digitalcommons.usu.edu/nrei/vol8/iss1/4
[5] Tisue S., Wilensky U., “NetLogo: A simple environment for modeling complexity”, International Conference on Complex Systems, 21 (2004), 16–21
[6] Luke S., Cioffi-Revilla C., Panait L., Sullivan K., Balan G., “Mason: A multiagent simulation environment”, Simulation, 81:7 (2005), 517–527 | DOI
[7] Trevorrow A., Rokicki T., Hutton T., Greene D., Summers J., Verver M., Golly – a game of life simulator, (accessed 7 March 2019) http://golly.sourceforge.net/
[8] Sayama H., “PyCX: A Python-based simulation code repository for complex systems education”, Complex Adaptive Systems Modeling, 1 (2013), 2 | DOI
[9] Waldrop M. M., Complexity: The Emerging Science at the Edge of Order and Chaos, Simon Schuster, N. Y., 1992, 380 pp.
[10] Sayama H., Introduction to the Modeling and Analysis of Complex Systems, SUNY Binghamton, N. Y., 2015, 478 pp.
[11] Hamann H., Swarm Robotics: A Formal Approach, Springer International Publishing, N. Y., 2018, 210 pp. | DOI
[12] Fitzhugh R., “Impulses and Physiological States in Theoretical Models of Nerve Membrane”, Biophysical Journal, 1:6 (1961), 445–466 | DOI
[13] Drossel B., Schwabl F., “Self-organized criticality in a forest-fire model”, Physica A : Statistical Mechanics and its Applications, 191:1 (1992), 47–50 | DOI
[14] Strogatz S., Sync: The Emerging Science of Spontaneous Order, Penguin, N. Y., 2004, 339 pp. | MR
[15] Wolfram S., A New Kind of Science, Wolfram Media, N. Y., 2002, 1197 pp. | MR | Zbl
[16] Bjorner A., Lovasz L., Shor P. W., “Chip-firing games on graphs”, European Journal of Combinatorics, 12:4 (1991), 283–291 | DOI | MR | Zbl
[17] Clifford P., Sudbury A., “A model for spatial conflict”, Biometrika, 60:3 (1973), 581–588 | DOI | MR | Zbl
[18] Kagel H. J., Roth E. A., The Handbook of Experimental Economics, Princeton Univ. Press, N. J., 1997, 744 pp.
[19] Levin S. A., “Public goods in relation to competition, cooperation, and spite”, PNAS, 111, Supplement 3 (2014), 10838–10845 | DOI
[20] Obolski U., Lewin-Epstein O., Even-Tov E., Ram Y., Hadany L., “With a little help from my friends: cooperation can accelerate the rate of adaptive valley crossing”, BMC Evolutionary Biology, 17 (2017), 143 | DOI
[21] Pfeiffer T., Bonhoeffer S., “An evolutionary scenario for the transition to undifferentiated multicellularity”, PNAS, 100:3 (2003), 1095–1098 | DOI
[22] Kreft J.-U., “Biofilms promote altruism”, Microbiology, 150:8 (2004), 2751–2760 | DOI
[23] Cesta A., Miceli M., Rizzo P., “Coexisting agents: Experiments on basic interaction attitude”, Journal of Intelligent Systems, 11:1 (2001), 1–42 | DOI
[24] Ivanko E., “Is evolution always “egolution”: Discussion of evolutionary efficiency of altruistic energy exchange”, Ecological Complexity, 34 (2018), 1–8 | DOI
[25] Hamilton W. D., “The genetical evolution of social behaviour”, Journal of Theoretical Biology, 7:1 (1964), 1–52 | DOI | MR
[26] Trivers R. L., “The evolution of reciprocal altruism”, The Quarterly Review of Biology, 46:1 (1971), 35–57 | DOI
[27] Axelrod R., Hamilton W. D., “The evolution of cooperation”, Science, 211:4489 (1981), 1390–1396 | DOI | MR | Zbl
[28] Nowak M. A., “Five rules for the evolution of cooperation”, Science, 314:5805 (2006), 1560–1563 | DOI | MR
[29] Stuart A., West A., Griffin S., Gardner A., “Evolutionary explanations for cooperation”, Current Biology, 17:16 (2007), R661–R672 | DOI
[30] Lewin-Epstein O., Aharonov R., Hadany L., “Microbes can help explain the evolution of host altruism”, Nature Communications, 8 (2017), 14040 | DOI
[31] Esteban-Fernández de Ávila B., Angsantikul P., Ramírez-Herrera D. E., Soto F., Teymourian H., Dehaini D., Chen Y., Zhang L., Wang J., “Hybrid biomembrane–functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins”, Science Robotics, 3:18 (2018), eaat0485 | DOI
[32] Morice C. P., Kennedy J. J., Rayner N. A., Jones P. D., “Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 dataset”, Journal of Geophysical Research : Atmospheres, 117 (2012), D08101 | DOI
[33] Makeham W. M., “On the Law of Mortality and the Construction of Annuity Tables”, The Assurance Magazine, and Journal of the Institute of Actuaries, 8:6 (1860), 301–310 | DOI
[34] MacArthur R. H., Wilson E. O., The theory of island biogeography, Princeton Univ. Press, N. J., 2001, 224 pp.
[35] Aurenhammer F., Klein R., Lee D.-T., Voronoi Diagrams and Delaunay Triangulations, World Scientific Publishing, N. J., 2013, 348 pp. | MR | Zbl
[36] Uran cluster, (accessed 7 March 2019) http://parallel.uran.ru/node/419
[37] Simon D., Evolutionary Optimization Algorithms, Wiley, N. Y., 2013, 772 pp. | MR | Zbl
[38] Schapire R. E., Freund Y. Y., Boosting: Foundations and Algorithms, The MIT Press, Cambridge, 2012, 544 pp. | MR