Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2020_20_2_a6, author = {D. V. Ivanov and I. V. Kirillova and L. Yu. Kossovich and L. V. Bessonov and A. V. Petraikin and A. V. Dol and E. S. Ahmad and S. P. Morozov and A. V. Vladzymyrskyy and K. A. Sergunova and A. V. Kharlamov}, title = {Influence of convolution kernel and beam-hardening effect on the assessment of trabecular bone mineral density using quantitative computed tomography}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {205--219}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a6/} }
TY - JOUR AU - D. V. Ivanov AU - I. V. Kirillova AU - L. Yu. Kossovich AU - L. V. Bessonov AU - A. V. Petraikin AU - A. V. Dol AU - E. S. Ahmad AU - S. P. Morozov AU - A. V. Vladzymyrskyy AU - K. A. Sergunova AU - A. V. Kharlamov TI - Influence of convolution kernel and beam-hardening effect on the assessment of trabecular bone mineral density using quantitative computed tomography JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2020 SP - 205 EP - 219 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a6/ LA - en ID - ISU_2020_20_2_a6 ER -
%0 Journal Article %A D. V. Ivanov %A I. V. Kirillova %A L. Yu. Kossovich %A L. V. Bessonov %A A. V. Petraikin %A A. V. Dol %A E. S. Ahmad %A S. P. Morozov %A A. V. Vladzymyrskyy %A K. A. Sergunova %A A. V. Kharlamov %T Influence of convolution kernel and beam-hardening effect on the assessment of trabecular bone mineral density using quantitative computed tomography %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2020 %P 205-219 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a6/ %G en %F ISU_2020_20_2_a6
D. V. Ivanov; I. V. Kirillova; L. Yu. Kossovich; L. V. Bessonov; A. V. Petraikin; A. V. Dol; E. S. Ahmad; S. P. Morozov; A. V. Vladzymyrskyy; K. A. Sergunova; A. V. Kharlamov. Influence of convolution kernel and beam-hardening effect on the assessment of trabecular bone mineral density using quantitative computed tomography. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 2, pp. 205-219. http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a6/
[1] Patel S. P., Lee J. J., Hecht G. G., Holcombe S. A., Wang S. C., Goulet G. A., “Normative Vertebral Hounsfield Unit Values and Correlation with Bone Mineral Density”, J. Clin. Exp Orthop., 2:14 (2016) | DOI
[2] Kim K. J., Kim D. H., Lee J. I., Choi B. K., Han I. H., Nam K. H., “Hounsfield Units on Lumbar Computed Tomography for Predicting Regional Bone Mineral Density”, Open Med., 14:1 (2019), 545–551 | DOI
[3] Khan S. N., Warkhedkar R. M., Shyam A. K., “Analysis of Hounsfield Unit of Human Bones for Strength Evaluation”, Procedia Materials Science, 6 (2014), 512–519 | DOI
[4] Giambini H., Dragomir-Daescu D., Huddleston P. M., Camp J. J., An K. N., Nassr A., “The Effect of Quantitative Computed Tomography Acquisition Protocols on Bone Mineral Density Estimation”, J. Biomech. Eng., 137:11 (2015), 114502 | DOI
[5] Pickhardt P. J., Bodeen G., Brett A., Brown J. K., Binkley N., “Comparison of femoral neck BMD evaluation obtained using lunar DXA and QCT with asynchronous calibration from CT colonography”, J. Clin. Densitom., 18:1 (2015), 5–12 | DOI
[6] Brown J. K., Timm W., Bodeen G., Chason A., Perry M., Vernacchia F., Delournett R., “Asynchronously Calibrated Quantitative Bone Densitometry”, J. Clin. Densitom., 20:2 (2017), 216–225 | DOI
[7] Andersen H. K., Jensen K., Berstad A. E., Aalokken T. M., Kristiansen J., von Gohren Edwin B., Hagen G., Martinsen A. C., “Choosing the best reconstruction technique in abdominal computed tomography: a systematic approach”, J. Comput. Assist. Tomogr., 38:6 (2014), 853–858 | DOI
[8] Michalski A. S., Edwards W. B., Boyd S. K., “The Influence of Reconstruction Kernel on Bone Mineral and Strength Estimates Using Quantitative Computed Tomography and Finite Element Analysis”, J. Clin. Densitom., 22:2 (2019), 219–228 | DOI
[9] Birnbaum B. A., Hindman N., Lee J., Babb J. S., “Multi-detector row CT attenuation measurements: assessment of intra- and interscanner variability with an anthropomorphic body CT phantom”, Radiology, 242:1 (2007), 109–119 | DOI
[10] Free J., Eggermont F., Derikx L., van Leeuwen R., van der Linden Y., Jansen W., Raaijmakers E., Tanck E., Kaatee R. The effect of different CT scanners, scan parameters and scanning setup on Hounsfield units and calibrated bone density: a phantom study, Biomed. Phys. Eng. Express, 4:5 (2018), 055013 | DOI
[11] Gromov A. I., Petraikin A. V., Kulberg N. S., Kim S. Yu., Morozov S. P., Sergunova K. A., Usanov M. S., “The Problem of X-Ray Attenuation Estimation Accuracy in Multislice Computed Tomography”, Medical Visualization, 2016, no. 6, 133–142 (in Russian) | MR
[12] Crookshank M., Ploeg H.-L., Ellis R., Macintyre N. J., “Repeatable calibration of Hounsfield units to mineral density and effect of scanning medium”, Advances in Biomechanics and Applications, 1:1 (2013), 015–022 | DOI
[13] Witt R. M., Cameronand J. R., Improved bone standard containing dipotassium hydrogen phosphate solution for the intercomparison of different transmission bone scanning systems, Technical Report, NTIS Issue Number 197112, 1970, 6 pp.
[14] Morozov S. P., Sergunova K. A., Petryaykin A. V., Semenov D. S., Petryaykin F. A., Akhmad E. S., Nizovtsova L. A., Vladzimirsky A. V., Phantom device for testing x-ray methods of osteodensitometry, Utility Model Patent 186961. RF. No 2018125297; declared 10.07.2018; published 11.02.2019. Bull. No 5, 11 pp. (in Russian)
[15] Glantz S. A., Primer of biostatistics, Seventh Edition, McGraw-Hill, New York, 2011, 320 pp.
[16] Kobzar A. I., Applied Mathematical Statistics. For Engineers and Scientists, Fizmatlit, M., 2006 (in Russian)