Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2020_20_2_a11, author = {I. E. Tananko and N. P. Fokina}, title = {An analysis method of open queueing networks with a degradable structure and instantaneous repair times of systems}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {266--276}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a11/} }
TY - JOUR AU - I. E. Tananko AU - N. P. Fokina TI - An analysis method of open queueing networks with a degradable structure and instantaneous repair times of systems JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2020 SP - 266 EP - 276 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a11/ LA - ru ID - ISU_2020_20_2_a11 ER -
%0 Journal Article %A I. E. Tananko %A N. P. Fokina %T An analysis method of open queueing networks with a degradable structure and instantaneous repair times of systems %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2020 %P 266-276 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a11/ %G ru %F ISU_2020_20_2_a11
I. E. Tananko; N. P. Fokina. An analysis method of open queueing networks with a degradable structure and instantaneous repair times of systems. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 2, pp. 266-276. http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a11/
[1] Park K., Kim S., “A capacity planning model of unreliable multimedia service systems”, Journal of Systems and Software, 63:1 (2002), 69–76 | DOI
[2] Economides A. A., Silvester J. A., “Optimal routing in a network with unreliable links”, IEEE INFOCOM'88, 1988, 288–297 | DOI
[3] Thomas N., Thornley D., Zatschler H., “Approximate solution of a class of queueing networks with breakdowns”, Proc. of 17th European Simulation Multiconference, SCS Publishers, Nottingham, UK, 2003, 251–256
[4] Chao X., “A queueing network model with catastrophes and product form solution”, Operations Research Letters, 18:2 (1995), 75–79 | DOI | MR | Zbl
[5] Tananko I. E., “About closed queueing networks with a variable number of queues”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 5:1 (2005), 138–141 (in Russian)
[6] Tsitsiashvili G. Sh., Osipova M. A., “Limiting distributions in queueing networks with unreliable elements”, Probl. Inf. Transm., 44:4 (2008), 385–394 | DOI | MR | Zbl
[7] Tassiulas L., “Scheduling and performance limits of networks with constantly changing topology”, IEEE Transactions on Information Theory, 43:3 (1997), 1067–1073 | DOI | MR | Zbl
[8] Fokina N. P., Tananko I. E., “The Method of Routing in Queueing Networks with Variable Topology”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 13:2-2 (2013), 82–88 (in Russian) | DOI | Zbl
[9] Statkevich C. E., Matalytsky M. A., “Investigation of queueing network with unreliable systems at transient regime”, Tomsk State University Journal of Control and Computer Science, 2012, no. 1 (18), 112–125 (in Russian)
[10] Chakka R., Mitrani I., “Approximate solutions for open networks with breakdowns and repairs”, Stochastic Networks : Theory and Applications, Royal Statistical Society Series, 4, eds. F. P. Kelly, S. Zachary, I. Ziedins, Clarendon Press, Oxford, 1996, 267–280 | Zbl
[11] Vinod B., Altiok T., “Approximating Unreliable Queueing Networks Under the Assumption of Exponentiality”, J. Opl. Res. Soc., 37:3 (1986), 309–316 | DOI | Zbl
[12] Thomas N., Bradley J. T., Knottenbelt W. J., “Stochastic analysis of scheduling strategies in a Grid-based resource model”, IEEE Proceedings - Software, 151:5 (2004), 232–239 | DOI
[13] Mitrophanov Yu. I., Analysis of Queueing Networks, Nauchnaya kniga, Saratov, 2005, 175 pp. (in Russian)
[14] He Q.-M., Fundamentals of matrix-analytic methods, Springer, N. Y., 2014, 349 pp. | DOI | MR | Zbl