The external estimate of the compact set by Lebesgue set of the convex function
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 2, pp. 142-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

The finite-dimensional problem of embedding a given compact $D \subset \mathbb{R}^p$ into the lower Lebesgue set $G (\alpha) = \{y \in \mathbb{R}^p: f (y) \leqslant \alpha \}$ of the convex function $f(\cdot)$ with the smallest value of $\alpha$ due to the offset of $D$ is considered. Its mathematical formalization leads to the problem of minimizing the function $\phi (x) = \max\limits_{y \in D} f (y - x)$ on $\mathbb{R}^p$. The properties of the function $\phi(x)$ are researched, necessary and sufficient conditions and conditions for the uniqueness of the problem solution are obtained. As an important case for applications, the case when $f(\cdot)$ is the Minkowski gauge function of some convex body $M$ is singled out. It is shown that if $M$ is a polyhedron, then the problem reduces to a linear programming problem. The approach to get an approximate solution is proposed in which, having known the approximation of $x_i$ to obtain $x_{i+1}$ it is necessary to solve the simpler problem of embedding the compact set $D$ into the Lebesgue set of the gauge function of the set $M_i= G(a_i)$, where $a_i = f(x_i )$. The rationale for the convergence for a sequence of approximations to the problem solution is given.
@article{ISU_2020_20_2_a0,
     author = {V. V. Abramova and S. I. Dudov and M. A. Osiptsev},
     title = {The external estimate of the compact set by {Lebesgue} set of the convex function},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {142--153},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a0/}
}
TY  - JOUR
AU  - V. V. Abramova
AU  - S. I. Dudov
AU  - M. A. Osiptsev
TI  - The external estimate of the compact set by Lebesgue set of the convex function
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2020
SP  - 142
EP  - 153
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a0/
LA  - ru
ID  - ISU_2020_20_2_a0
ER  - 
%0 Journal Article
%A V. V. Abramova
%A S. I. Dudov
%A M. A. Osiptsev
%T The external estimate of the compact set by Lebesgue set of the convex function
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2020
%P 142-153
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a0/
%G ru
%F ISU_2020_20_2_a0
V. V. Abramova; S. I. Dudov; M. A. Osiptsev. The external estimate of the compact set by Lebesgue set of the convex function. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 2, pp. 142-153. http://geodesic.mathdoc.fr/item/ISU_2020_20_2_a0/

[1] Pschenichnyi B. N., Convex Analysis and Extremal Problems, Nauka, M., 1980, 320 pp. (in Russian) | MR

[2] Demyanov V. F., Vasiliev L. V., Nondifferentiable Optimization, Springer-Optimization Software, New York, 1986, 452 pp. | MR | MR

[3] Demyanov V. F., Rubinov A. V., Elements of nonsmooth analysis and quasidifferential calculus, Nauka, M., 1990, 431 pp. (in Russian)

[4] Clarke F. H., Optimization and Nonsmooth Analysis, SIAM, 1990, 308 pp. | MR | Zbl

[5] Brayton R. K., Hachtel G. D., Sangiovanni-Vincentelli A. L., “A survey of optimization techniques for integrated-circuit design”, Proceedings of the IEEE, 69:10 (1981), 1334–1362 | DOI

[6] Dudov S. I., Meshchanov V. P., “Parametric optimization of the designed devices according to the criteria of cost and quality”, Reviews on Electronics. Ser. 1. Electronics Microwave, 1 (1512), TsNII “Electronika”, M., 1990, 40 pp. (in Russian)

[7] Ioffe A. D., Tikhomirov V. M., Theory of extremal problems, Nord Holland PC, Amsterdam, 1979, 460 pp. | MR | Zbl

[8] Polovinkin E. S., Balashov M. V., Elements of convex and strongly convex analysis, Fizmatlit, M., 2004, 240 pp. (in Russian)

[9] Rockafellar R. T., Convex Analysis, Princeton Univ. Press, Princeton, 1970, 472 pp. | MR | Zbl

[10] Zukhovitski S. I., Avdeeva L. I., Linear and Convex Programming, Fizmatlit, M., 1967, 460 pp. (in Russian)

[11] Ivanov G. E., Weakly convex sets and functions, Fizmatlit, M., 2004, 352 pp. (in Russian)

[12] Poliak B. T., Introduction to optimization, Optimization Software, New York, 1987, 460 pp. | MR | MR

[13] Vial J.-P., “Strong and weak convexity of set and funtions”, Math. Ops. Res., 8:2 (1983), 231–259 | DOI | MR | Zbl

[14] Vasiliev F. P., Optimization methods, MTsNMO, M., 2011, 433 pp. (in Russian)

[15] Bronstein E. M., “Approximation of convex sets by polytopes”, Journal of Mathematical Sciences, 153:6 (2008), 727–762 | DOI | MR | Zbl