The principle of localization at the class of functions integrable in the Riemann for the processes of Lagrange--Sturm--Liouville
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 1, pp. 51-63

Voir la notice de l'article provenant de la source Math-Net.Ru

Let us say that the principle of localization holds at the class of functions $F$ at point $x_0 \in [0, \pi]$ for the Lagrange–Sturm–Liouville interpolation process $L_n^{SL}(f,x)$ if $\lim_{n \rightarrow \infty}\left|L_n^{SL}(f, x_0)-L_n^{SL}(g,x_0)\right|=0$ follows from the fact that the condition $f(x)=g(x)$ is met for any two functions f and g belonging to F in some neighborhood $O_\delta(x_0)$, $\delta>0$. It is proved that the principle of localization at the class of Riemann integrable functions holds for interpolation processes built on the eigenfunctions of the regular Sturm–Liouville problem with a continuous potential of bounded variation. It is established that the principle of localization at the class of continuous on the segment $[0, \pi]$ functions holds for interpolation processes built on the eigenfunctions of the regular Sturm–Liouville problem with an optional continuous potential of bounded variation. We consider the case of boundary conditions of the third kind, from which the boundary conditions of the first kind are removed. Approximative properties of Lagrange–Sturm–Liouville operators at point $x_0\in [0, \pi] $ in both cases depend solely on the values of the approximate function just in the neighborhood of this point $x_0\in [0, \pi]$.
@article{ISU_2020_20_1_a4,
     author = {A. Yu. Trynin and E. D. Kireeva},
     title = {The principle of localization at the class of functions integrable in the {Riemann} for the processes of {Lagrange--Sturm--Liouville}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {51--63},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a4/}
}
TY  - JOUR
AU  - A. Yu. Trynin
AU  - E. D. Kireeva
TI  - The principle of localization at the class of functions integrable in the Riemann for the processes of Lagrange--Sturm--Liouville
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2020
SP  - 51
EP  - 63
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a4/
LA  - ru
ID  - ISU_2020_20_1_a4
ER  - 
%0 Journal Article
%A A. Yu. Trynin
%A E. D. Kireeva
%T The principle of localization at the class of functions integrable in the Riemann for the processes of Lagrange--Sturm--Liouville
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2020
%P 51-63
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a4/
%G ru
%F ISU_2020_20_1_a4
A. Yu. Trynin; E. D. Kireeva. The principle of localization at the class of functions integrable in the Riemann for the processes of Lagrange--Sturm--Liouville. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 1, pp. 51-63. http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a4/