Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2020_20_1_a4, author = {A. Yu. Trynin and E. D. Kireeva}, title = {The principle of localization at the class of functions integrable in the {Riemann} for the processes of {Lagrange--Sturm--Liouville}}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {51--63}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a4/} }
TY - JOUR AU - A. Yu. Trynin AU - E. D. Kireeva TI - The principle of localization at the class of functions integrable in the Riemann for the processes of Lagrange--Sturm--Liouville JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2020 SP - 51 EP - 63 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a4/ LA - ru ID - ISU_2020_20_1_a4 ER -
%0 Journal Article %A A. Yu. Trynin %A E. D. Kireeva %T The principle of localization at the class of functions integrable in the Riemann for the processes of Lagrange--Sturm--Liouville %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2020 %P 51-63 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a4/ %G ru %F ISU_2020_20_1_a4
A. Yu. Trynin; E. D. Kireeva. The principle of localization at the class of functions integrable in the Riemann for the processes of Lagrange--Sturm--Liouville. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 1, pp. 51-63. http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a4/
[1] Natanson G. I., “About one interpolation process”, Scientific notes of the Leningrad Pedagogical Institute, 166 (1958), 213–219 (in Russian)
[2] Kashin B. S., Saakyan A. A., Orthogonal series, Izd-vo AFTs, M., 1999, 550 pp. (in Russian)
[3] Novikov I. Ya., Stechkin S. B., “Basic wavelet theory”, Russian Math. Surveys, 53:6 (1998), 1159–1231 | DOI | DOI
[4] Stenger F., Numerical Methods Based on Sinc and Analytic Functions, Springer Ser. Comput. Math., 20, Springer-Verlag, N. Y., 1993, 565 pp. | DOI
[5] Dobeshi I., Ten Wavelet Lectures, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001, 464 pp. (in Russian)
[6] Butzer P. L., “A retrospective on 60 years of approximation theory and associated fields”, Journal of Approximation Theory, 160:1–2 (2009), 3–18 | DOI
[7] Shmukler A. I., Shulman T. A., “Certain properties of Kotel'nikov series”, Soviet Math. (Iz. VUZ), 18:3 (1974), 81–90
[8] Livne O. E., Brandt A., “MuST: The Multilevel Sinc Transform”, SIAM J. Sci. Comput., 33:4 (2011), 1726–1738 | DOI
[9] Krivoshein A., Skopina M., “Multivariate sampling-type approximation”, Analysis and Applications, 15:4 (2017), 521–542 | DOI
[10] Kolomoitsev Yu., Skopina M., “Around Kotelnikov – Shannon formula”, 12th International Conference on Sampling Theory and Applications, SampTA 2017, IEEE, 2017, 279–282 | DOI
[11] Maleknejad K., Rostami Ya., Shahi Kalalagh H., “Numerical solution for first kind Fredholm integral equations by using sinc collocation method”, IJAPM, 6:3 (2016), 120–128 | DOI
[12] Belichenko K. V., Sobolev V. M., “Sinc approximation of data RFID methods”, Mathematics. Mechanics, 19, Izdatel'stvo Saratovskogo universiteta, Saratov, 2017, 7–9 (in Russian)
[13] Shakirov I. A., “Influence of the choice of Lagrange interpolation nodes on the exact and approximate values of the Lebesgue constants”, Siberian Math. J., 55:6 (2014), 1144–1160 | DOI
[14] Coroianu L., Gal S. G., “Localization results for the non-truncated max-product sampling operators based on Fejer and sinc-type kernels”, Demonstratio Math., 49:1 (2016), 38–49 | DOI
[15] Richardson M., Trefethen L., “A sinc function analogue of Chebfun”, SIAM J. Sci. Comput., 33:5 (2011), 2519–2535 | DOI
[16] Tharwat M. M., “Sinc approximation of eigenvalues of Sturm – Liouville problems with a Gaussian multiplier”, Calcolo, 51:3 (2014), 465–484 | DOI
[17] Alquran M. T., Al-Khaled K. M., “Numerical comparison of methods for solving systems of conservation laws of mixed type”, Int. Journal of Math. Analysis, 5:1 (2011), 35–47
[18] Sklyarov V. P., “On the best uniform sinc-approximation on a finite interval”, East J. Approx., 14:2 (2008), 183–192
[19] Mohsen A., El-Gamel M., “A sinc-collocation method for the linear Fredholm integro-differential equations”, Z. Angew. Math. Phys., 58:3 (2007), 380–390 | DOI
[20] Umakhanov A. Ya., Sharapudinov I. I., “Interpolation of functions by the Whittaker sums and their modifications: conditions for uniform convergence”, Vladikavkaz Mathematical Journal, 18:4 (2016), 61–70 (in Russian)
[21] Trynin A. Yu., “On some properties of sinc approximations of continuous functions on the interval”, Ufa Math. J., 7:4 (2015), 111–126 | DOI
[22] Trynin A. Yu., “On necessary and sufficient conditions for convergence of sinc approximations”, St. Petersburg Math. J., 27:5 (2016), 825–840 | DOI
[23] Trynin A. Yu., “Approximation of continuous on a segment functions with the help of linear combinations of sincs”, Russian Math. (Iz. VUZ), 60:3 (2016), 63–71 | DOI
[24] Trynin A. Yu., “The divergence of Lagrange interpolation processes in eigenfunctions of the Sturm – Liouville problem”, Russian Math. (Iz. VUZ), 54:11 (2010), 66–76 | DOI
[25] Trynin A. Yu., “On the absence of stability of interpolation in eigenfunctions of the Sturm – Liouville problem”, Russian Math. (Iz. VUZ), 44:9 (2000), 58–71
[26] Mosina K. B., “The Dini – Lipschitz principle for the Lagrange – Sturm – Liouville interpolation process”, Mathematics. Mechanics, 15, Izdatel'stvo Saratovskogo universiteta, Saratov, 2013, 56–59 (in Russian)
[27] Mosina K. B., “Nevai formula for the Lagrange – Sturm – Liouville interpolation process”, Works of the N. I. Lobachevsky Mathematical Center, 46, 2013, 316–318 (in Russian)
[28] Turashvili K. B., “Asymptotic formulas for the eigenfunctions and eigenvalues of the Sturm – Liouville problem”, Mathematics. Mechanics, 14, Izdatel'stvo Saratovskogo universiteta, Saratov, 2012, 73–76 (in Russian)
[29] Turashvili K. B., “On the lack of stability of interpolation with respect to the eigenfunctions of the Sturm – Liouville problem”, Works of the N. I. Lobachevsky Mathematical Center, 44, 2011, 347–350 (in Russian)
[30] Turashvili K. B., “On the interpolation analogue of the integral sign of Dini”, Mathematics. Mechanics, 12, Izdatel'stvo Saratovskogo universiteta, Saratov, 2010, 94–98 (in Russian)
[31] Trynin A. Yu., “Uniform convergence of Lagrange – Sturm – Liouville processes on one functional class”, Ufa Math. J., 10:2 (2018), 93–108 | DOI
[32] Trynin A. Yu., “A criterion of convergence of Lagrange – Sturm – Liouville processes in terms of one-sided modulus of variation”, Russian Math. (Iz. VUZ), 62:8 (2018), 51–63 | DOI
[33] Trynin A. Yu., Sample theorem on a segment and its generalization: Discretization theorem for sinc approximation and its generalization, LAP LAMBERT Academic Publishing RU, 2016, 488 pp. (in Russian)
[34] Trynin A. Yu., “On inverse nodal problem for Sturm – Liouville operator”, Ufa Math. J., 5:4 (2013), 112–124 | DOI
[35] Privalov A. A., Function Interpolation Theory, Izdatel'stvo Saratovskogo universiteta, Saratov, 1990, 230 pp. (in Russian)
[36] Golubov B. I., “Spherical Jump of a Function and the Bochner – Riesz Means of Conjugate Multiple Fourier Series and Fourier Integrals”, Math. Notes, 91:4 (2012), 479–486 | DOI | DOI
[37] Golubov B. I., “Absolute convergence of multiple Fourier series”, Math. Notes, 31:1 (1985), 8–15 | DOI
[38] Dyachenko M. I., “On a class of summability methods for multiple Fourier series”, Sb. Math., 204:3 (2013), 307–322 | DOI | DOI
[39] Skopina M. A., Maksimenko I. E., “Multidimensional periodic wavelets”, St. Petersburg Math. J., 15:2 (2004), 165–190 | DOI
[40] Dyachenko M. I., “Uniform Convergence of Hyperbolic Partial Sums of Multiple Fourier Series”, Math. Notes, 76:5 (2004), 673–681 | DOI | DOI
[41] Ivannikova T. A., Timashova E. V., Shabrov S. A., “On necessary conditions for a minimum of a quadratic functional with a Stieltjes integral and zero coefficient of the highest derivative on the part of the interval”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 13:2-1 (2013), 3–8 (in Russian) ; (1954), 428 с. | DOI
[42] Sansone Dzh., Ordinary Differential Equations, in 2 vols., v. 1, Izdatel'stvo inostrannoi literatury, M., 1953, 336 pp.; v. 2, 1954, 428 pp. (in Russian)
[43] Egorova I. A., “On the principle of localization in the theory of interpolation”, Scientific notes of the Leningrad Pedagogical Institute, 86 (1949), 317–335 (in Russian)
[44] Natanson I. P., Theory of functions of a real variable, Nauka, M., 1974, 480 pp. (in Russian)