Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2020_20_1_a3, author = {V. A. Molchanov and R. A. Farakhutdinov}, title = {On definability of universal graphic automata by their input symbol semigroups}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {42--50}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a3/} }
TY - JOUR AU - V. A. Molchanov AU - R. A. Farakhutdinov TI - On definability of universal graphic automata by their input symbol semigroups JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2020 SP - 42 EP - 50 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a3/ LA - en ID - ISU_2020_20_1_a3 ER -
%0 Journal Article %A V. A. Molchanov %A R. A. Farakhutdinov %T On definability of universal graphic automata by their input symbol semigroups %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2020 %P 42-50 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a3/ %G en %F ISU_2020_20_1_a3
V. A. Molchanov; R. A. Farakhutdinov. On definability of universal graphic automata by their input symbol semigroups. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 1, pp. 42-50. http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a3/
[1] Plotkin B. I., Groups of Automorphisms of Algebraic Systems, WoLters-Noordhoff Publ, Groningen, The Netherlands, 1972, 502 pp.
[2] Pinus A. G., “On the elementary equivalence of derived structures of free lattices”, Russian Math. (Iz. VUZ), 46:5 (2002), 42–45
[3] Pinus A. G., “Elementary Equivalence of Derived Structures of Free Semigroups”, Algebra and Logic, 43:6 (2004), 408–417 | DOI
[4] Gluskin L. M., “Semigroups and rings of endomorphisms of linear spaces”, Izv. Akad. Nauk SSSR. Ser. Mat., 23:6 (1959), 841–870 (in Russian)
[5] Gluskin L. M., “Semi-groups of isotone transformations”, Uspekhi Mat. Nauk, 16:5 (101) (1961), 157–162 (in Russian)
[6] Vazhenin Yu. M., “Ordered sets and their inf-endomorphisms”, Math. Notes, 7:3 (1970), 204–208 | DOI
[7] Vazhenin Yu. M., “The elementary definability and elementary characterizability of classes of reflexive graphs”, Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 7, 3–11 (in Russian)
[8] Markov V. T., Mikhalev A. V., Skornyakov L. A., Tuganbaev A. A., “Rings of endomorphisms of modules and lattices of submodules”, J. Soviet Math., 31:3 (1985), 3005–3051 | DOI
[9] Ulam S. M., A Collection of Mathematical Problems, Interscience, New York, 1960, 150 pp.
[10] Plotkin B. I., Greenglaz L. Ja., Gvaramija A. A., Algebraic structures in automata and databases theory, World Scientific Publ. Co, River Edge, NJ, 1992, 296 pp.
[11] Molchanov V. A., “Semigroups of mappings on graphs”, Semigroup Forum, 27 (1983), 155–199 | DOI
[12] Molchanov V. A., Farakhutdinov R. A., “On universal graphic automata”, Computer Science and Information Technologies, Materials of the Int. Sci. Conf., Izdatel'skii tsentr “Nauka”, Saratov, 2018, 276–279 (in Russian)
[13] Clifford A. H., G. B. Preston, The algebraic theory of semigroups, Amer. Math. Soc., Providence, RI, 1964, 224 pp.
[14] Bogomolov A. M., Salii V. N., Algebraic foundations of the theory of discrete systems, Nauka, M., 1997, 368 pp. (in Russian)
[15] Harary F., Graph Theory, Addison-Wesley, Reading, MA, 1969, 274 pp.
[16] Molchanov V. A., “A universal planar automaton is determined by its semigroup of input symbols”, Semigroup Forum, 82:1 (2011), 1–9 | DOI