On the geometry of three-dimensional pseudo-Riemannian homogeneous spaces.~I
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 1, pp. 29-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of establishing links between the curvature and the topological structure of a manifold is one of the important problems of geometry. In general, the purpose of the research of manifolds of various types is rather complicated. Therefore, it is natural to consider this problem for a narrower class of pseudo-Riemannian manifolds, for example, for the class of homogeneous pseudo-Riemannian manifolds. The basic notions — such as an isotropically-faithful pair, a pseudo-Riemannian homogeneous space, an affine connection, curvature and torsion tensors, Levi–Cevita connection, Ricci tensor, Ricci-flat space, Einstein space, Ricci-parallel space, locally-symmetric space, conformally-flat space — are defined. In this paper, for all three-dimensional Riemannian homogeneous spaces, it is determined under what conditions the space is Ricci-flat, Einstein, Ricci-parallel, locally-symmetric or conformally-flat. In addition, Levi–Cevita connections, curvature and torsion tensors, holonomy algebras, scalar curvatures, Ricci tensors are written out in explicit form for all these spaces. The results can be applied in mathematics and physics, since many fundamental problems in these fields are reduced to the study of invariant objects on homogeneous spaces.
@article{ISU_2020_20_1_a2,
     author = {N. P. Mozhey},
     title = {On the geometry of three-dimensional {pseudo-Riemannian} homogeneous {spaces.~I}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {29--41},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a2/}
}
TY  - JOUR
AU  - N. P. Mozhey
TI  - On the geometry of three-dimensional pseudo-Riemannian homogeneous spaces.~I
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2020
SP  - 29
EP  - 41
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a2/
LA  - ru
ID  - ISU_2020_20_1_a2
ER  - 
%0 Journal Article
%A N. P. Mozhey
%T On the geometry of three-dimensional pseudo-Riemannian homogeneous spaces.~I
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2020
%P 29-41
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a2/
%G ru
%F ISU_2020_20_1_a2
N. P. Mozhey. On the geometry of three-dimensional pseudo-Riemannian homogeneous spaces.~I. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 1, pp. 29-41. http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a2/

[1] Besse A., Einstein Manifolds, in 2 vols., v. 1, Mir, M., 1990, 318 pp.; v. 2, 384 pp. (in Russian)

[2] Wang M., “Einstein metrics from symmetry and Bundle Constructions”, Surveys in Differential Geometry, v. VI, Essays on Einstein Manifolds, International Press, Boston, MA, 1999, 287–325; 1, No 2, 248–276

[3] Reshetnyak Yu. G., “Isothermal coordinates in manifolds of bounded curvature”, Sib. Matem. Zhurn., 1:1 (1960), 88–116 ; 1:2, 248–276 (in Russian)

[4] Gray A., “Einstein-like manifolds which are not Einstein”, Geom. Dedicata, 7:3 (1978), 259–280 | DOI

[5] Alekseevsky D. V., Kimelfeld B. N., “Classification of homogeneous conformally flat Riemannian manifolds”, Math. Notes, 24:1 (1978), 559–562

[6] Kowalski O., Nikcevic S., “On Ricci eigenvalues of locally homogeneous Riemann 3-manifolds”, Geom. Dedicata, 1 (1996), 65–72 | DOI

[7] Rodionov E. D., Slavsky V. V., Chibrikova L. N., “Locally conformally homogeneous pseudo-Riemannian spaces”, Sib. Adv. Math., 17 (2007), 186–212 | DOI

[8] Rodionov E. D., “Compact simply connected standard homogeneous Einstein manifolds with holonomy group $SO(n)$”, Izvestiya of Altai State University, 1997, no. 1 (3), 7–10 (in Russian)

[9] Nikonorov Yu. G., Rodionov E. D., Slavsky V. V., “Geometry of homogeneous Riemannian manifolds”, J. Math. Sci., 146 (2007), 6313–6390 | DOI

[10] Onishchik A. L., Topology of transitive transformation groups, Fizmatlit, M., 1995, 384 pp. (in Russian)

[11] Kobayashi S., Nomizu K., Foundations of differential geometry, in 2 vols., v. 1, John Wiley and Sons, N. Y., 1963, 330 pp.; v. 2, 1969, 488 pp.

[12] Mozhey N. P., “Affine connections on three-dimensional pseudo-Riemannian homogeneous spaces. I”, Russ. Math., 57:12 (2013), 44–62 | DOI

[13] Mozhei N. P., “Affine connections on three-dimensional pseudo-Riemannian homogeneous spaces. II”, Russ. Math., 58:6 (2014), 28–43 | DOI

[14] Mozhey N. P., Three-dimensional isotropy-faithful homogeneous spaces and connections on them, KFU Publishing House, Kazan, 2015, 394 pp. (in Russian)

[15] Garcia A., Hehl F. W., Heinicke C., Macias A., “The Cotton tensor in Riemannian spacetimes”, Classical and Quantum Gravity, 21:4 (2004), 1099–1118