Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2020_20_1_a2, author = {N. P. Mozhey}, title = {On the geometry of three-dimensional {pseudo-Riemannian} homogeneous {spaces.~I}}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {29--41}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a2/} }
TY - JOUR AU - N. P. Mozhey TI - On the geometry of three-dimensional pseudo-Riemannian homogeneous spaces.~I JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2020 SP - 29 EP - 41 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a2/ LA - ru ID - ISU_2020_20_1_a2 ER -
%0 Journal Article %A N. P. Mozhey %T On the geometry of three-dimensional pseudo-Riemannian homogeneous spaces.~I %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2020 %P 29-41 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a2/ %G ru %F ISU_2020_20_1_a2
N. P. Mozhey. On the geometry of three-dimensional pseudo-Riemannian homogeneous spaces.~I. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 1, pp. 29-41. http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a2/
[1] Besse A., Einstein Manifolds, in 2 vols., v. 1, Mir, M., 1990, 318 pp.; v. 2, 384 pp. (in Russian)
[2] Wang M., “Einstein metrics from symmetry and Bundle Constructions”, Surveys in Differential Geometry, v. VI, Essays on Einstein Manifolds, International Press, Boston, MA, 1999, 287–325; 1, No 2, 248–276
[3] Reshetnyak Yu. G., “Isothermal coordinates in manifolds of bounded curvature”, Sib. Matem. Zhurn., 1:1 (1960), 88–116 ; 1:2, 248–276 (in Russian)
[4] Gray A., “Einstein-like manifolds which are not Einstein”, Geom. Dedicata, 7:3 (1978), 259–280 | DOI
[5] Alekseevsky D. V., Kimelfeld B. N., “Classification of homogeneous conformally flat Riemannian manifolds”, Math. Notes, 24:1 (1978), 559–562
[6] Kowalski O., Nikcevic S., “On Ricci eigenvalues of locally homogeneous Riemann 3-manifolds”, Geom. Dedicata, 1 (1996), 65–72 | DOI
[7] Rodionov E. D., Slavsky V. V., Chibrikova L. N., “Locally conformally homogeneous pseudo-Riemannian spaces”, Sib. Adv. Math., 17 (2007), 186–212 | DOI
[8] Rodionov E. D., “Compact simply connected standard homogeneous Einstein manifolds with holonomy group $SO(n)$”, Izvestiya of Altai State University, 1997, no. 1 (3), 7–10 (in Russian)
[9] Nikonorov Yu. G., Rodionov E. D., Slavsky V. V., “Geometry of homogeneous Riemannian manifolds”, J. Math. Sci., 146 (2007), 6313–6390 | DOI
[10] Onishchik A. L., Topology of transitive transformation groups, Fizmatlit, M., 1995, 384 pp. (in Russian)
[11] Kobayashi S., Nomizu K., Foundations of differential geometry, in 2 vols., v. 1, John Wiley and Sons, N. Y., 1963, 330 pp.; v. 2, 1969, 488 pp.
[12] Mozhey N. P., “Affine connections on three-dimensional pseudo-Riemannian homogeneous spaces. I”, Russ. Math., 57:12 (2013), 44–62 | DOI
[13] Mozhei N. P., “Affine connections on three-dimensional pseudo-Riemannian homogeneous spaces. II”, Russ. Math., 58:6 (2014), 28–43 | DOI
[14] Mozhey N. P., Three-dimensional isotropy-faithful homogeneous spaces and connections on them, KFU Publishing House, Kazan, 2015, 394 pp. (in Russian)
[15] Garcia A., Hehl F. W., Heinicke C., Macias A., “The Cotton tensor in Riemannian spacetimes”, Classical and Quantum Gravity, 21:4 (2004), 1099–1118