Quasi-polynomials of Capelli.~II
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 1, pp. 4-16

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper observes the continuation of the study of a certain kind of polynomials of type Capelli (Capelli quasi-polynomials) belonging to the free associative algebra $F\{X\bigcup Y\}$ considered over an arbitrary field $F$ and generated by two disjoint countable sets $X$ and $Y$. It is proved that if $char F=0$ then among the Capelli quasi-polynomials of degree $4k-1$ there are those that are neither consequences of the standard polynomial $S^-_{2k}$ nor identities of the matrix algebra $M_k(F)$. It is shown that if $char F=0$ then only two of the six Capelli quasi-polynomials of degree $4k-1$ are identities of the odd component of the $Z_2$-graded matrix algebra $M_{k+k}(F)$. It is also proved that all Capelli quasi-polynomials of degree $4k+1$ are identities of certain subspaces of the odd component of the $Z_2$-graded matrix algebra $M_{m+k}(F)$ for $m>k$. The conditions under which Capelli quasi-polynomials of degree $4k+1$ being identities of the subspace $M_1^{(m,k)}(F)$ are given.
@article{ISU_2020_20_1_a0,
     author = {S. Yu. Antonov and A. V. Antonova},
     title = {Quasi-polynomials of {Capelli.~II}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {4--16},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a0/}
}
TY  - JOUR
AU  - S. Yu. Antonov
AU  - A. V. Antonova
TI  - Quasi-polynomials of Capelli.~II
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2020
SP  - 4
EP  - 16
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a0/
LA  - ru
ID  - ISU_2020_20_1_a0
ER  - 
%0 Journal Article
%A S. Yu. Antonov
%A A. V. Antonova
%T Quasi-polynomials of Capelli.~II
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2020
%P 4-16
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a0/
%G ru
%F ISU_2020_20_1_a0
S. Yu. Antonov; A. V. Antonova. Quasi-polynomials of Capelli.~II. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 1, pp. 4-16. http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a0/