Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2020_20_1_a0, author = {S. Yu. Antonov and A. V. Antonova}, title = {Quasi-polynomials of {Capelli.~II}}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {4--16}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a0/} }
TY - JOUR AU - S. Yu. Antonov AU - A. V. Antonova TI - Quasi-polynomials of Capelli.~II JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2020 SP - 4 EP - 16 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a0/ LA - ru ID - ISU_2020_20_1_a0 ER -
S. Yu. Antonov; A. V. Antonova. Quasi-polynomials of Capelli.~II. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 20 (2020) no. 1, pp. 4-16. http://geodesic.mathdoc.fr/item/ISU_2020_20_1_a0/
[1] Antonov S. Yu., “Some types of identities of subspaces $M^{(m,k)}_0(F), M^{(m,k)}_1(F)$ of matrix superalgebra $M^{(m,k)}(F)$”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154, no. 1 (2012), 189–201 (in Russian)
[2] Antonov S. Yu., Antonova A. V., “Quasi-polynomials of Capelli”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 15:4 (2015), 371–382 (in Russian) | DOI
[3] Birmajer D., “Polynomial detection of matrix subalgebras”, Proc. Amer. Math. Soc., 133:4 (2004), 1007–1012
[4] Chang Q., “Some consequences of the standard polynomial”, Proc. Amer. Math. Soc., 104:3 (1988), 707–710
[5] Kostant B., “A theorem of Frobenius, a theorem of Amitsur-Levitzki and cohomology theory”, J. Math. Mech., 7 (1958), 237–264
[6] Rowen L. H., “Standard polynomials in matrix algebras”, Proc. Amer. Math. Soc., 190 (1974), 253–284
[7] Wenxin M., Racine M., “Minimal identities of symmetric matrices”, Proc. Amer. Math. Soc., 320:1 (1990), 171–192
[8] Vincenzo O. M., “On the graded identities of $M_{1,1}(E)$”, Israel J. Math., 80:3 (1992), 323–335
[9] Mattina D., “On the graded identities and cocharacters of the algebra of 3x3 matrices”, J. Linear Algebra App., 384 (2004), 55–75 | DOI
[10] Aver'yanov I. V., “Basis of graded identities of the superalgebra $M_{1,2}(F)$”, Math. Notes, 85 (2009), 467–483 | DOI | DOI
[11] Vincenzo O. M., “$Z_2$-graded polynomial identities for superalgebras of block-triangular matrices”, Serdica Math. J., 30 (2004), 111–134
[12] Vincenzo O. M., “$Z_2$-graded cocharacters for superalgebras of triangular matrices”, J. of Pure and Applied Algebra, 194:1–2 (2004), 193–211 | DOI
[13] Amitsur S. A., Levitzki J., “Minimal identities for algebras”, Proc. Amer. Math. Soc., 1:4 (1950), 449–463
[14] Antonov S. Yu., Antonova A. V., “To Chang Theorem. II”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 17:2 (2017), 127–137 (in Russian) | DOI