Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2019_19_4_a8, author = {V. P. Radchenko and O. S. Afanaseva and V. E. Glebov}, title = {Influence of residual stresses on geometric parameters of surface-strengthened beam}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {464--478}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a8/} }
TY - JOUR AU - V. P. Radchenko AU - O. S. Afanaseva AU - V. E. Glebov TI - Influence of residual stresses on geometric parameters of surface-strengthened beam JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2019 SP - 464 EP - 478 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a8/ LA - ru ID - ISU_2019_19_4_a8 ER -
%0 Journal Article %A V. P. Radchenko %A O. S. Afanaseva %A V. E. Glebov %T Influence of residual stresses on geometric parameters of surface-strengthened beam %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2019 %P 464-478 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a8/ %G ru %F ISU_2019_19_4_a8
V. P. Radchenko; O. S. Afanaseva; V. E. Glebov. Influence of residual stresses on geometric parameters of surface-strengthened beam. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 4, pp. 464-478. http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a8/
[1] I. Altenberger, R. K. Nalla, Y. Sano, “On the affect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6-Al-4V at elevated temperatures up to 550$~^\circ$C”, Intern. J. Fatigue, 44 (2012), 292–302 | DOI
[2] R. A. Brockman, W. R. Braisted, S. E. Olson et. al., “Prediction and characterization of residual stresses from laser shock peening”, Intern. J. Fatigue, 36 (2012), 96–108 | DOI
[3] R. C. McClung, “A literature survey on the stability and significance of residual stresses during fatigue”, Fatigue Fract. Eng. Mater. Struct., 30 (2007), 173–205 | DOI
[4] K. A. Soady, “Life assessment methodologies incorporating shot peening process effects: mechanistic consideration of residual stresses and strain hardening. 1. Effeact of shot peening on fatigue resistance”, Mater. Sci. Technol., 29:6 (2013), 673–651 | DOI
[5] M. A. Terres, N. Laalai, H. Sidhom, “Effect of hitriding and shot peening on the fatigue behavior of 42CrMo4 steel: Experimantal analysis and predictive approach”, Mater. Design., 35 (2012), 741–748 | DOI
[6] V. F. Pavlov, V. A. Kirpichev, V. S. Vakuluk, Prediction of fatigue resistance of surface reinforced parts by residual stresses, Izd-vo STsN RAN, Samara, 2012, 125 pp. (in Russian)
[7] V. A. Kravchenko, V. G. Krucilo, G. N. Gutman, Thermoplastic Hardening – Reserve for Increased Strength and Reliability of Machine Parts, Izd-vo SamGTU, Samara, 2000, 216 pp. (in Russian)
[8] S. I. Ivanov, “To determination of residual stresses in the cylinder by means of rings and strips”, Residual tension, 53, Izd-vo KuAI, Kujbyshev, 1971, 32–42 (in Russian)
[9] S. I. Ivanov, “Examination of residual tangential stresses in cylindrical part by means of rings”, Residual tension, 53, Izd-vo KuAI, Kujbyshev, 1971, 107–115 (in Russian)
[10] N. N. Davidenkov, “Calculation of Residual Stresses in Cold Drawn Tubes”, Zeitschrift für Metallkunde, 24:25 (1932), 25–29
[11] I. A. Birger, Residual tension, Mashgiz, M., 1963, 232 pp. (in Russian)
[12] G. S. Schajer, “Advaces in Hole-Drilling Residual Stress Measurements”, Exp. Mech., 50:2 (2010), 159–168 | DOI
[13] M. E. Fitspatrick, A. Lodini, Analysis of Residual Stress by Diffraction using Neutron and Synchrotron Radiation, CRC Press, L., 2003, 368 pp. | DOI
[14] E. Rouhaud, D. Deslaef, J. Lu, J. L. Chaboche, “Modeling of residual stress, shot peening”, Handbook on Residual Stress, ed. Jian Lu, Society of Experimental Mechanics, 2005, 116–148
[15] D. Gallitelli, D. Boyer, M. Gelineau, Y. Colaitis et al., “Simulation of sHot peening: From process parameters to residual stress fields in a structure”, Comptes Rendus Mécanique, 344:4–5 (2016), 355–374 | DOI
[16] W. D. Musinski, D. L. McDowell, “On the eigenstrain aplication of shot-peened residual stresses within a crystal plasticity framework: Application to Ni-base superalloy specimens”, Int. J. Mech. Sci., 100 (2015), 195–208 | DOI
[17] R. Purohit, C. S. Verma, R. S. Rana, “Simulation of shot peening process”, Material Today: Proceedings, 4:2 (2017), 1244–1251 | DOI
[18] L. Xie, Ch. Wang, L. Wang et al., “Numerical analysis and experimental validation on residual stress distribution of titanium matrix composite after shot peening treatment”, Mech. Mat., 99 (2016), 2–8 | DOI
[19] M. Jebahi, A. Gakwaya, J. Lévesque et al., “Robust methodology to simulate real shot peening process using discrete-cotinuum coupling method”, Int. J. Mech. Sci., 107 (2016), 21–33 | DOI
[20] S. Keller, S. Chupakhin, P. Staron, E. Maawad, N. Kashaev, B. Klusemann, “Experimental and numerical investigation of residual stresses in laser shock peened AA2198”, Proc. Jour. of Mater. Tech., 255 (2018), 294–307 | DOI
[21] J. Badredding, E. Rouhaud, M. Micoulaut, S. Rerny, “Simulation of shot dynamics for ultrasonic shot peening: Effects of process parameters”, Int. J. Mech. Sci., 82 (2014), 179–190 | DOI
[22] V. F. Pavlov, A. K. Stoljarov, V. S. Vakuljuk, V. A. Kirpichev, Calculation of residual stresses in parts with stress concentrators by initial deformations, Izd-vo SNTs RAN, Samara, 2008, 124 pp. (in Russian)
[23] V. P. Sazanov, V. A. Kirpichev, V. S. Vakuljuk, V. F. Pavlov, “The Definition of initial deformations in the cylindrical parts surface layer by Finite Elements Modeling method using PATRAN/NASTRAN program complex”, Vestnik UGATU, 19:2 (68) (2015), 35–40 (in Russian)
[24] I. E. Keller, V. N. Trofimov, A. V. Vladykin, V. V. Plusnin, D. S. Petukhov, I. V. Vindokurov, “On the reconstruction of residual stresses and strains of a plate after shot peening”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 22:1 (2018), 40–64 (in Russian) | DOI | Zbl
[25] V. P. Radchenko, A. Yu. Kurov, “Effect of anisotropy of surface plastic hardening on formation of residual stresses in cylindrical samples with semicircular notch”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 20:4 (2016), 675–690 (in Russian) | DOI
[26] V. P. Sazanov, O. Yu. Semenova, A. V. Pismarov, D. S. Churikov, “On the influence of the original radial deformations on the development of the fatigue cracks of strengthened parts from construction steels”, Proc. of the XI All-Russian Scientific Conference with International Participation “Mathematical Modeling and Boundary Value Problems”, in 2 vols (May 27-30, 2019, Samara, Russian Federation), v. 1, Izd-vo SamGTU, Samara, 2019, 168–171 (in Russian)
[27] V. P. Radchenko, M. N. Saushkin, T. I. Bochkova, “A mathematical modeling and experimental study of forming and relaxation of the residual stresses in plane samples made of EP742 alloy after the ultrasonic hardening under the high-temperature creep conditions”, PNRPU Mechanics Bulletin, 2016, no. 1, 93–112 (in Russia) | DOI
[28] V. P. Radchenko, V. Ph. Pavlov, M. N. Saushkin, “Investigation of surface plastic hardening anisotropy influence on residual stresses distribution in hollow and solid cylindrical specimens”, PNRPU Mechanics Bulletin, 2015, no. 1, 130–147 | DOI
[29] M. N. Saushkin, V. P. Radchenko, V. F. Pavlov, “Method of Calculating the fields of residual stresses and plastic strains in cylindrical specimens with allowance for surface hardening anisotropy”, Jour. of Appl. Mech. and Tech. Phys., 52:2 (2011), 303–310 | DOI | Zbl