Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2019_19_4_a7, author = {V. A. Kovalev and Yu. N. Radayev}, title = {On wave solutions of dynamic equations of hemitropic micropolar thermoelasticity}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {454--463}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a7/} }
TY - JOUR AU - V. A. Kovalev AU - Yu. N. Radayev TI - On wave solutions of dynamic equations of hemitropic micropolar thermoelasticity JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2019 SP - 454 EP - 463 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a7/ LA - ru ID - ISU_2019_19_4_a7 ER -
%0 Journal Article %A V. A. Kovalev %A Yu. N. Radayev %T On wave solutions of dynamic equations of hemitropic micropolar thermoelasticity %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2019 %P 454-463 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a7/ %G ru %F ISU_2019_19_4_a7
V. A. Kovalev; Yu. N. Radayev. On wave solutions of dynamic equations of hemitropic micropolar thermoelasticity. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 4, pp. 454-463. http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a7/
[1] G. A. Maugin, Non-Classical Continuum Mechanics. A Dictionary, Advanced Structured Materials, 51, Springer, Singapore, 2017, 259 pp. | DOI | MR | Zbl
[2] W. Nowacki, Theory of Asymmetric Elasticity, Pergamon Press, Oxford–New York–Toronto–Sydney–Paris–Frankfurt, 1986, 383 pp. | MR | Zbl
[3] J. Dyszlewicz, Micropolar Theory of Elasticity, Lecture Notes in Applied and Computational Mechanics, Springer Science Business Media, Berlin–Heidelberg, 2012, 345 pp. | MR
[4] Yu. N. Radayev, “The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 22:3 (2018), 504–517 (in Russian) | DOI | Zbl
[5] W. Nowacki, Theory of Elasticity, Mir, M., 1975, 872 pp. (in Russian)
[6] W. Nowacki, Problems of Thermoelasticity, USSR Academy of Sciences, M., 1962, 364 pp. (in Russian)
[7] W. Nowacki, Dynamic Problems of Thermoelasticity, Mir, M., 1970, 256 pp. (in Russian)
[8] V. A. Kovalev, Yu. N. Radayev, Waves Problem of Field Theory and Thermomechanics, Izd-vo Sarat. un-ta, Saratov, 2010, 328 pp. (in Russian)
[9] J. B. Witham, Linear and Nonlinear Waves, Mir, M., 1977, 622 pp. (in Russian)
[10] L. M. Brekhovskikh, V. V. Goncharov, Introduction to Continuum Mechanics (in Application to Theory of Waves), Nauka, M., 1982, 336 pp. (in Russian)
[11] Z. Wesolowski, Dynamic Problems of Nonlinear Elasticity, Naukova Dumka, Kiev, 1981, 216 pp. (in Russian)
[12] A. K. Sushkevich, Foundations of Higher Algebra, ONTI, L., 1937, 476 pp. (in Russian)
[13] Y. N. Radayev, “Hyperbolic Theories and Applied Problems of Solid Mechanics”, Actual Problems of Mechanics, Int. Conf., Dedicated to L. A. Galin 100th Anniversary, Theses of reports (September, 20–21, 2012, Moscow), M., 2012, 75–76 (in Russian)