Extracting clinically relevant data from biomechanical modeling of surgical treatment options for spinal injury in damaged vertebrae Th10, Th11
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 4, pp. 439-453.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two three-dimensional geometric solid-state models of the Th7-L1 spinal segment (Model 1, Model 2) with metal construction were built. Models include the vertebrae Th7, Th8, Th9, Th10, Th11, Th12, L1, intervertebral discs, facet joints and ligaments, and metal construction elements. In Model 1, the cortical and spongy layers are constructed by three-dimensional solids, facet joints and intervertebral discs by three-dimensional bodies, ligaments by one-dimensional objects. In Model 2, the spongy layer of bone tissue is built with a three-dimensional solid body, the cortical layer with a shell 1 mm thick, the facet joints and intervertebral discs with three-dimensional bodies, and the ligaments with one-dimensional ones. Bodies are accepted linear, isotropic, homogeneous. The mechanical properties of all biological tissues and metal are set on the basis of published data. The problem of the statics of an elastic body is solved. The fields of complete displacements and Mises equivalent stresses are obtained for each point of the constructed models under characteristic loads. The analysis of the field of equivalent stresses makes it possible to identify areas of the spine that are most susceptible to destruction. The analysis of the field of full displacements makes it possible to evaluate the stability and reliability of fixation under standard physiological loads.
@article{ISU_2019_19_4_a6,
     author = {A. M. Donnik and D. V. Ivanov and S. I. Kireev and L. Yu. Kossovich and N. V. Ostrovsky and I. A. Norkin and K. K. Levchenko and S. V. Likhachev},
     title = {Extracting clinically relevant data from biomechanical modeling of surgical treatment options for spinal injury in damaged vertebrae {Th10,} {Th11}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {439--453},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a6/}
}
TY  - JOUR
AU  - A. M. Donnik
AU  - D. V. Ivanov
AU  - S. I. Kireev
AU  - L. Yu. Kossovich
AU  - N. V. Ostrovsky
AU  - I. A. Norkin
AU  - K. K. Levchenko
AU  - S. V. Likhachev
TI  - Extracting clinically relevant data from biomechanical modeling of surgical treatment options for spinal injury in damaged vertebrae Th10, Th11
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2019
SP  - 439
EP  - 453
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a6/
LA  - ru
ID  - ISU_2019_19_4_a6
ER  - 
%0 Journal Article
%A A. M. Donnik
%A D. V. Ivanov
%A S. I. Kireev
%A L. Yu. Kossovich
%A N. V. Ostrovsky
%A I. A. Norkin
%A K. K. Levchenko
%A S. V. Likhachev
%T Extracting clinically relevant data from biomechanical modeling of surgical treatment options for spinal injury in damaged vertebrae Th10, Th11
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2019
%P 439-453
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a6/
%G ru
%F ISU_2019_19_4_a6
A. M. Donnik; D. V. Ivanov; S. I. Kireev; L. Yu. Kossovich; N. V. Ostrovsky; I. A. Norkin; K. K. Levchenko; S. V. Likhachev. Extracting clinically relevant data from biomechanical modeling of surgical treatment options for spinal injury in damaged vertebrae Th10, Th11. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 4, pp. 439-453. http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a6/

[1] A. E. Shulga, V. G. Ninel', I. A. Norkin, D. M. Puchin'yan, V. V. Zaretskov, G. A. Korshunova, V. V. Ostrovskii, A. A. Smolkin, “Contemporary views on the pathogenesis of trauma to the spinal cord and peripheral nerve trunks”, Neuroscience and Behavioral Physiology, 45:7 (2015), 811–819 | DOI

[2] V. V. Zaretskov, V. B. Arseniyevich, S. V. Likhachev, A. E. Shulga, S. V. Stepukhovich, N. V. Bogomolova, “Injury to the Transient Thoracolumbar Spine”, Pediatric Traumatology, Orthopedics and Reconstructive Surgery, 4:2 (2015), 61–66 (in Russia)

[3] A. G. Kuchumov, Biomechanical modeling of fixators made of shape memory alloys used in maxillofacial surgery, Diss. Cand. Sci. (Phys. and Math.), Saratov, 2009, 112 pp. (in Russian) | Zbl

[4] V. M. Tverier, E. Y. Simanovskaya, Y. I. Nyashin, A. A. Kichenko, “Biomechanical Examination of Development and Functionig of the Human Dentofacial System”, Russian Journal of biomechanics, 11:4 (2007), 84–104 (in Russian)

[5] V. A. Markin, Diagnostic and prognostic resources of modern methods of clinical and biomechanical assessment of intraosseous dental implants, Diss. Doc. Sci. (Med.), M., 2006, 205 pp. (in Russia)

[6] V. M. Tver'ye, “Biomechanical modeling of ontogenesis of human dentition”, The XI All-Russian Congress on Fundamental Problems of Theoretical and Applied Mechanics, Collection of Reports (Kazan, August 20-24, 2015), Kazan, 2015, 3686–3688 (in Russia)

[7] V. M. Tver'ye, Yu. I. Nyashin, V. N. Nikitin, “Biomechanical modeling of the formation and development of the dentition of the person”, XVII Winter School on Continuum Mechanics, Abstracts, Perm, 2011, 309 (in Russian)

[8] V. N. Nikitin, Biomechanical modeling of bit correction of human dental system, Diss. Cand. Sci. (Phys. and Math.), Perm, 2017, 161 pp. (in Russian)

[9] A. L. Kudyashev, V. V. Hominets, A. V. Teremshonok, K. E. Korostelev, E. B. Nagornyy, A. V. Dol, D. V. Ivanov, I. V. Kirillova, L. Yu. Kossovich, “Biomechanical background for the formation of proximal transition kyphosis after the transpedicular fixation of the lumbar spine”, Russian Journal of Biomechanics, 21:3 (2017), 313–323 (in Russia) | DOI

[10] S. S. Gavryushin, V. A. Kuzmichev, D. A. Gribov, “Biomechanical modeling of surgical treatment of funnel chest deformity”, Russian Journal of biomechanics, 18:1 (63) (2014), 36–47 (in Russian)

[11] S. V. Likhachev, V. V. Zaretskov, V. B. Arsenievich, I. N. Shchanitsyn, A. E. Shulga, V. V. Zaretskov, D. V. Ivanov, “Optimization of transpedicular spondylosynthesis application for type A3 lesions of the thoracolumbar transition: Clinical experimental study”, Saratov Journal of Medical Scientific Research, 15:2 (2019), 275–283 (in Russian)

[12] A. Rohlmann, T. Zander, M. Rao, G. Bergmann, “Applying a follower load delivers realistic results for simulating standing”, Journal of Biomechanics, 42:10 (2009), 1520–1526 | DOI

[13] F. Du C-, N. Yang, C. Guo J-, P. Huang Y-, C. Zhang, “Biomechanical response of lumbar facet joints under follower preload: a finite element study”, BMC Musculoskelet Disord., 17:1 (2016), 980 | DOI

[14] A. Shirazi-Adl, A. Ahmed, S. Shrivastava, “A finite element study of a lumbar motion segment subjected to pure sagittal plane moments”, Journal of Biomechanics, 19:4 (1986), 331–350 | DOI

[15] M. Sharabi, A. Levi-Sasson, R. Wolfson, K. R. Wade, F. Galbusera, D. Benayahu, H. J. Wilke, R. Haj-Ali, “The Mechanical Role of the Radial Fiber Network Within the Annulus Fibrosus of the Lumbar Intervertebral Disc: A Finite Elements Study”, Journal of Biomechanical Engineering, 141:2 (2019), 021006 | DOI

[16] K. Totoribe, N. Tajima, E. Chosa, “A biomechanical study of posterolateral lumbar fusion using a three-dimensional nonlinear finite element method”, Journal of Orthopaedic Science, 4:2 (1999), 115–126 | DOI

[17] H. C. Wu, R. F. Yao, “Mechanical behavior of the human annulus fibrosus”, Journal of Biomechanics, 9:1 (1976), 1–7 | DOI

[18] A. Rohlmann, T. Zander, M. Rao, G. Bergmann, “Applying a follower load delivers realistic results for simulating standing”, Journal of Biomechanics, 42:10 (2009), 1520–1526 | DOI

[19] V. K. Goel, W. Kong, J. S. Han, J. N. Weinstein, L. G. Gilbertson, “A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles”, Spine, 18:11 (1993), 1531–1536 | DOI

[20] V. Moramarco, A. P. del Palomar, C. Pappalettere, M. Doblary, “An accurate validation of a computational model of a human lumbosacral segment”, Journal of Biomechanics, 43:2 (2010), 334–342 | DOI

[21] C. S. Chen, C. K. Cheng, C. L. Liu, W. H. Lo, “Stress analysis of the disc adjacent to interbody fusion in lumbar spine”, Medical Engineering Physics, 23:7 (2001), 483–491 | DOI

[22] J. Chazal, A. Tanguy, M. Bourges, G. Gaurel, G. Escande, M. Guillot, “Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction”, Journal of Biomechanics, 18:3 (1985), 167–176 | DOI

[23] A. M. Donnik, I. V. Kirillova, L. Yu. Kossovich, K. K. Levchenko, S. V. Likhachev, “The possibility of using biomechanical modeling at the stage of preoperative planning for spinal injuries”, Relevant Problems of Applied Mathematics, Informatics and Mechanics, Selected Papers of Intern. Sci. Conf., Voronezh, 2019, 218–223 (in Russian)

[24] A. V. Dol, E. S. Dol, D. V. Ivanov, “Biomechanical modeling of surgical reconstructive treatment of spinal spondylolisthesis at $L4-L5$ level”, Russian Journal of biomechanics, 22:1 (2018), 31–44 (in Russian) | DOI

[25] A. Kiapour, D. Ambati, R. W. Hoy, V. Goel, “Effect of graded facetectomy on biomechanics of Dynesis dynamic stabilization system”, Spine, 37:10 (2012), E581–E589 | DOI

[26] V. Goel, K. Kim, E. Young, T. H. Lim, J. N. Weinstein, “An analytical investigation of the mechanics of spinal instrumentation”, Spine, 13:9 (1998), 1003–1011 | DOI

[27] K. K. Lee, E. C. Teo, F. K. Fuss, V. Vanneuville, T. X. Qiu, H. W. Ng, K. Yang, R. J. Sabitzer, “Finite-element analysis for lumbar interbody fusion under axial loading”, IEEE Transactions on Biomedical Engineering, 51:3 (2004), 393–400 | DOI

[28] L. P. Nolte, M. M. Panjabi, T. R. Oxland, “Biomechanical properties of lumbar spinal ligaments”, Clinical Implant Materials, Advances in Biomaterials, 9, eds. Heimke G., Soltesz U., Lee A. J. C., Elsevier, Heidelberg, Germany, 1990, 663–668

[29] A. M. Donnik, I. V. Kirillova, L. Yu. Kossovich, V. V. Zaretskov, S. V. Lykhachev, I. A. Norkin, “Biomechanical modeling of reconstructive intervention on the thoracolumbar transition”, AIP Conference Proceedings, 1959:1 (2018), 090002 | DOI

[30] S. H. Lee, Y. J. Im, K. T. Kim, Y. H. Kim, W. M. Park, K. Kim, “Comparison of cervical spine biomechanics after fixed-and mobile-core artificial disc replacement: A finite element analysis”, Spine, 36:9 (2011), 700–708 | DOI

[31] L. Dong, G. Li, H. Mao, S. Marek, K. H. Yang, “Development and validation of a 10-year-old child ligamentous cervical spine finite element model”, Annals of Biomedical Engineering, 41:2 (2013), 2538–2552 | DOI

[32] S. N. Zahari, M. J. A. Latif, N. R. A. Rahim, M. R. A. Kadir, T. Kamarul, “The effects of physiological biomechanical loading on intradiscal pressure and annulus stress in lumbar spine: A finite element analysis”, Journal of Healthcare Engineering, 2017 (2017), 9618940 | DOI

[33] Y. H. Kim, B. Khuyagbaatar, K. Kim, “Recent advances in finite element modeling of the human cervical spine”, Journal of Mechanical Science and Technology, 32:1 (2018), 1–10 | DOI | Zbl

[34] J. Nedoma, J. Stehlik, I. Hlavacek, J. Danek, T. Dostalova, P. Preckova, Mathematical and computational methods and algorithms in biomechanics of human skeletal systems: An introduction, John Wiley Sons, 2011, 300 pp. | DOI

[35] E. S. Baykov, Prediction of the results of surgical treatment of hernias of the lumbar intervertebral, Diss. Cand. Sci. (Med.), Novosibirsk, 2014, 135 pp. (in Russian) | Zbl