Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2019_19_4_a5, author = {A. M. Donnik and D. V. Ivanov and L. Yu. Kossovich and K. K. Levchenko and S. I. Kireev and K. M. {\CYRM}{\cyro}rozov and N. V. Ostrovsky and V. V. Zaretskov and S. V. Likhachev}, title = {Creation of three-dimensional solid-state models of a spine with transpedicular fixation using a specialized software}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {424--438}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a5/} }
TY - JOUR AU - A. M. Donnik AU - D. V. Ivanov AU - L. Yu. Kossovich AU - K. K. Levchenko AU - S. I. Kireev AU - K. M. Моrozov AU - N. V. Ostrovsky AU - V. V. Zaretskov AU - S. V. Likhachev TI - Creation of three-dimensional solid-state models of a spine with transpedicular fixation using a specialized software JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2019 SP - 424 EP - 438 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a5/ LA - ru ID - ISU_2019_19_4_a5 ER -
%0 Journal Article %A A. M. Donnik %A D. V. Ivanov %A L. Yu. Kossovich %A K. K. Levchenko %A S. I. Kireev %A K. M. Моrozov %A N. V. Ostrovsky %A V. V. Zaretskov %A S. V. Likhachev %T Creation of three-dimensional solid-state models of a spine with transpedicular fixation using a specialized software %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2019 %P 424-438 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a5/ %G ru %F ISU_2019_19_4_a5
A. M. Donnik; D. V. Ivanov; L. Yu. Kossovich; K. K. Levchenko; S. I. Kireev; K. M. Моrozov; N. V. Ostrovsky; V. V. Zaretskov; S. V. Likhachev. Creation of three-dimensional solid-state models of a spine with transpedicular fixation using a specialized software. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 4, pp. 424-438. http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a5/
[1] A. E. Shulga, V. G. Ninel', I. A. Norkin, D. M. Puchin'yan, V. V. Zaretskov, G. A. Korshunova, V. V. Ostrovskii, A. A. Smolkin, “Contemporary views on the pathogenesis of trauma to the spinal cord and peripheral nerve trunks”, Neuroscience and Behavioral Physiology, 45:7 (2015), 811–819 | DOI
[2] V. V. Zaretskov, V. B. Arseniyevich, S. V. Likhachev, A. E. Shulga, S. V. Stepukhovich, N. V. Bogomolova, “Injury to the Transient Thoracolumbar Spine”, Pediatric Traumatology, Orthopedics and Reconstructive Surgery, 4:2 (2015), 61–66 (in Russia)
[3] A. M. Donnik, I. V. Kirillova, L. Yu. Kossovich, V. V. Zaretskov, S. V. Lykhachev, I. A. Norkin, “Biomechanical modeling of reconstructive intervention on the thoracolumbar transition”, AIP Conference Proceedings, 1959:1 (2018), 090002 | DOI
[4] S. V. Likhachev, V. V. Zaretskov, V. B. Arsenievich, A. E. Shulga, I. N. Shchanitsyn, K. K. Skripachenko, “Biomechanical Aspects of Circular Spondylosynthesis of the Transient Thoracolumbar Spine”, Saratov Journal of Medical Scientific Research, 14:3 (2018), 560–566 (in Russia)
[5] J. C. Su, Z. D. Li, L. H. Cao, B. G. Yu, C. C. Zhang, M. Li, “Three-dimensional finite element analysis of lumbar vertebra loaded by static stress and its biomechanical significance”, Chinese Journal of Traumatology, 12:3 (2009), 153–156 | DOI
[6] M. Xu, J. Yang, I. H. Lieberman, R. Haddas, “Lumbar spine finite element model for healthy subjects: development and validation”, Computer Methods in Biomechanics and Biomedical Engineering, 20:1 (2016), 1–15 | DOI | Zbl
[7] A. L. Kudyashev, V. V. Hominets, A. V. Teremshonok, K. E. Korostelev, E. B. Nagornyy, A. V. Dol, D. V. Ivanov, I. V. Kirillova, L. Yu. Kossovich, “Biomechanical background for the formation of proximal transition kyphosis after the transpedicular fixation of the lumbar spine”, Russian Journal of Biomechanics, 21:3 (2017), 313–323 (in Russian) | DOI
[8] A. V. Dol, E. S. Dol, D. V. Ivanov, “Biomechanical modeling of surgical reconstructive treatment of spinal spondylolisthesis at L4-L5 level”, Russian Journal of Biomechanics, 22:1 (2018), 31–44 (in Russian) | DOI
[9] A. L. Kudyashev, V. V. Khominets, A. V. Teremshonok, Ye. B. Nagornyy, S. Yu. Stadnichenko, A. V. Dol, D. V. Ivanov, I. V. Kirillova, L. Yu. Kossovich, A. L. Kovtun, “Biomechanical modeling in surgical treatment of a patient with true lumbar spondylolisthesis”, Spine Surgery, 15:4 (2018), 87–94 (in Russian) | DOI | DOI
[10] Y. H. Kim, B. Khuyagbaatar, K. Kim, “Recent advances in finite element modeling of the human cervical spine”, Journal of Mechanical Science and Technology, 32:1 (2018), 1–10 | DOI | Zbl
[11] M. Dreischarf, A. Rohlmann, G. Bergmann, T. Zander, “Optimised loads for the simulation of axial rotation in the lumbar spine”, Journal of Biomechanics, 44:12 (2011), 2323–2327 | DOI
[12] F. Galbusera, T. Bassani, L. L. Barbera, C. Ottardi, B. Schlager, M. Brayda-Bruno, T. Villa, H. J. Wilke, “Planning the surgical correction of spinal deformities: toward the identification of the biomechanical principles by means of numerical simulation”, Frontiers in Bioengineering and Biotechnology, 3 (2015), 178 | DOI
[13] A. Tsouknidas, N. Michailidis, S. Savvakis, K. Anagnostidis, K. D. Bouzakis, G. Kapetanos, “A finite element model technique to determine the mechanical response of a lumbar spine segment under complex loads”, Journal of Applied Biomechanics, 28:4 (2012), 448–456 | DOI
[14] N. Toosizadeh, M. Haghpanabi, “Generating a finite element model of the cervical spine: estimating muscle forces and internal loads”, Scientia Iranica B, 18:6 (2017), 1237–1245 | DOI
[15] M. A. Tyndyka, V. Barron, P. E. McHugh, D. O'Mahoney, “Generation of a finite element model of the thoracolumbar spine”, Acta of Bioengineering and Biomechanics, 9:1 (2017), 35–46
[16] Y. S. Su, D. Ren, P. C. Wang, “Comparison of biomechanical properties of single and two- segment fusion for Denis type B spinal fractures”, Orthopaedic Surgery, 5:4 (2013), 266–273 | DOI | MR
[17] Y. Zhao, Q. Li, Z. Mo, Y. Sun, Y. Fan, “Finite element analysis of cervical arthroplasty with fusion against 2-level fusion”, Journal of Spinal Disorders and Techniques, 26:6 (2013), 347–350 | DOI
[18] L. Zhao, J. Chen, J. Liu, L. Elsamaloty, X. Liu, J. Li, H. Elgafy, J. Zhang, L. Wang, “Biomechanical analysis on of anterior transpedicular screw-fixation after two-level cervical corpectomy using finite element method”, Clinical Biomechanics, 60 (2018), 76–82 | DOI
[19] P. G. Cho, G. Y. Ji, S. H. Park, D. A. Sgin, “Biomechanical analysis of biodegradable cervical plates developed for anterior cervical discectomy and fusion”, Asian Spine Journal, 12:6 (2018), 1092–1099 | DOI
[20] M. Sharabi, A. Levi-Sasson, R. Wolfsan, K. R. Wade, F. Galsbusera, D. Benayahu, H. J. Wilke, R. Haj-Ali, “The mechanical role of the radial fibers network within the annulus fibrosus of the lumbar intervertebral disc: A finite elements study”, Journal of Biomechanical Engineering, 141:2 (2018), 1–29 | DOI
[21] Y. Jiang, X. Sun, X. Peng, J. Zhao, K. Zhang, “Effect of sacral slope on the biomechanical behaviour of the low lumbar spine”, Experimental and Therapeutic Medicine, 13:5 (2017), 2203–2210 | DOI
[22] A. I. Borovkov, L. B. Maslov, M. A. Zhmaylo, I. A. Zelinsky, I. B. Voinov, I. A. Keresten, D. V. Mamchits, R. M. Tikhilov, A. N. Kovalenko, S. S. Bilyk, A. O. Denisov, “Finite element stress analysis of a total hip replacement in two-legged standing”, Russian Journal of Biomechanics, 22:4 (2018), 382–400 | DOI
[23] M. J. Fagan, S. Julian, A. M. Mohsen, “Finite element analysis in spine research”, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 216:5 (2002), 281–298 | DOI
[24] S. M. Finley, D. S. Brodke, N. T. Spina, C. A. DeDen, B. J. Ellis, “FEBio finite element models of the human lumbar spine”, Computer Methods in Biomechanics and Biomedical Engineering, 21:6 (2018), 444–452 | DOI
[25] Y. Arai, H. E. Takahashi, H. Suzuki, “Stress analysis of the lumbar spine using the finite element model”, Spinal Disorders in Growth and Aging, ed. Takahashi H. E., Springer, Tokyo, 1995, 167–174 | DOI
[26] D. S. Shin, K. Lee, D. Kim, “Biomechanical study of lumbar spine with dynamic stabilization device using finite element method”, Asian Spine Journal, 12:6 (2018), 1092–1099 | DOI
[27] D. V. Ambati, E. K. Wright, R. A. Lehman, D. G. Kang, S. C. Wagner, A. E. Dmitriev, “Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study”, The Spine Journal, 15:6 (2015), 1812–1822 | DOI
[28] Q. Y. Li, H. J. Kim, J. Son, K. T. Kang, B. S. Chang, C. K. Lee, H. S. Slok, J. S. Yeom, “Biomechanical analysis of lumbar decompression surgery in relation to degenerative changes in the lumbar spine Validated finite element analysis”, Computer in Biology and Medicine, 89 (2017), 512–519 | DOI
[29] J. Q. Campbell, D. J. Coombs, M. Rao, P. J. Rullkoetter, A. J. Petrella, “Automated finite element meshing of the lumbar spine: Verification and Validation with 18 specimen specific models”, Journal of Biomechanics, 49:13 (2016), 2669–2676 | DOI
[30] A. Shirazi-Adl, A. Ahmed, S. Shrivastava, “A finite element study of a lumbar motion segment subjected to pure sagittal plane moments”, Journal of Biomechanics, 19:4 (1986), 331–350 | DOI
[31] K. K. Lee, E. C. Teo, F. K. Fuss, V. Vanneuville, T. X. Qiu, H. W. Ng, K. Yang, R. J. Sabitzer, “Finite-element analysis for lumbar interbody fusion under axial loading”, IEEE Transactions on Biomedical Engineering, 51:3 (2004), 393–400 | DOI
[32] K. Totoribe, N. Tajima, E. Chosa, “A biomechanical study of posterolateral lumbar fusion using a three-dimensional nonlinear finite element method”, Journal of Orthopaedic Science, 4:2 (1999), 115–126 | DOI
[33] W. Cho, S. K. Cho, C. Wu, “The biomechanics of pedicle screw-based instrumentation”, The Journal of Bone Joint Surgery (Br), 92-B:8 (2010), 1061–1065 | DOI
[34] Ch. A. Sansur, N. M. Caffes, D. M. Ibrahimi, N. L. Pratt, E. M. Lewis, A. A. Murgatroyd, B. W. Cunningham, “Biomechanical fixation properties of cortical versus transpedicular screws in the osteoporotic lumbar spine: An in vitro human cadaveric model”, Journal of Neurosurgery: Spine, 25:4 (2016), 467–476 | DOI
[35] W. Wu, C. Chen, J. Ning, P. Sun, J. Zhang, C. Wu, Z. Bi, J. Fan, X. Lai, J. Ouyang, “A novel anterior transpedicular screw artificial vertebral body system for lower cervical spine fixation: a finite element study”, Journal of Biomechanical Engineering, 139:6 (2017), 061003 | DOI
[36] Y. Guvenc, G. Akyoldas, S. Senturk, D. Erbulut, O. Yaman, A. F. Ozer, “How to reduce stress on the pedicle screws in thoracic spine? Importance of screw trajectory: a finite element analysis”, Turkish Neurosurgery, 29:1 (2018), 1–26 | DOI | MR
[37] C. B. Lv, X. Gao, X. X. Psn, H. M. Jin, X. T. Lou, Sh. M. Li, Y. Zh. Yan, C. C. Wu, Y. Lin, W. F. Ni, X. Y. Wang, A. M. Wu, “Biomechanical properties of novel transpedicular transdiscal screw fixation with interbody arthrodesis technique in lumbar spine: A finite element study”, Journal of Orthopaedic Translation, 15 (2018), 50–58 | DOI
[38] Y. Y. Hsieh, Ch. H. Chen, F. Y. Tsuang, L. Ch. Wu, Sh. Ch. Lin, Ch. J. Chiang, “Removal of fixation construct could mitigate adjacent segment stress after lumbosacral fusion: A finite element analysis”, Clinical Biomechanics, 43 (2017), 115–120 | DOI