Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2019_19_4_a2, author = {V. A. Yurko}, title = {On recovering differential operators on a closed set from spectra}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {389--396}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a2/} }
TY - JOUR AU - V. A. Yurko TI - On recovering differential operators on a closed set from spectra JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2019 SP - 389 EP - 396 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a2/ LA - en ID - ISU_2019_19_4_a2 ER -
V. A. Yurko. On recovering differential operators on a closed set from spectra. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 4, pp. 389-396. http://geodesic.mathdoc.fr/item/ISU_2019_19_4_a2/
[1] M. Bohner, A. Peterson, Dynamic Equations on Time Scales, Birkhäuser, Boston, MA, 2001, 358 pp. | MR | Zbl
[2] M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, MA, 2003, 348 pp. | MR | Zbl
[3] V. A. Marchenko, Sturm–Liouville Operators and Applications, Birkhäuser, Basel, 1986, 393 pp. | MR | Zbl
[4] B. M. Levitan, Inverse Sturm–Liouville Problems, VNU Science Press, Utrecht, 1987, 246 pp. | MR | Zbl
[5] G. Freiling, V. A. Yurko, Inverse Sturm–Liouville Problems and Their Applications, NOVA Science Publ., New York, 2001, 305 pp. | MR | Zbl
[6] V. A. Yurko, Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill-Posed Problems Series, 31, VSP, Utrecht, 2002, 306 pp. | DOI | MR
[7] J. R. McLaughlin, “Analytical methods for recovering coefficients in differential equations from spectral data”, SIAM Rev., 28 (1986), 53–72 | DOI | MR | Zbl
[8] J. Poeschel, E. Trubowitz, Inverse Spectral Theory, Academic Press, 1987, 192 pp. | MR | Zbl
[9] R. Beals, P. Deift, C. Tomei, Direct and inverse scattering on the line, Mathematical Surveys and Monographs, 28, AMS, Providence, RI, 1988, 209 pp. | DOI | MR | Zbl
[10] V. G. Romanov, Inverse Problems in Mathematical Physics, VNU Science Press, Utrecht, 1987, 367 pp. | MR
[11] L. A. Sakhnovich, Spectral Theory of Canonical Differential Systems. Method of Operator Identities, Operator Theory: Advances and Applications, 107, Birkhäuser, Basel, 1999, 408 pp. | DOI | MR | Zbl
[12] V. A. Yurko, “Inverse spectral problems for Sturm–Liouville operators on graphs”, Inverse Problems, 21:3 (2005), 1075–1086 | DOI | MR | Zbl
[13] D. Arov, H. Dym, Bitangential direct and inverse problems for systems of integral and differential equations, Encyclopedia of Mathematics and its Applications, 145, Cambridge University Press, 2012, 472 pp. | DOI | MR | Zbl
[14] V. Pivovarchik, M. Moeller, Spectral Theory of Operator Pencils, Hermite–Biehler Functions and their Applications, Operator Theory: Advances and Applications, 246, Birkhaüser, Cham, 2015, 412 pp. | DOI | MR | Zbl
[15] V. A. Yurko, “Inverse spectral problems for differential operators on spatial networks”, Russian Mathematical Surveys, 71:3 (2016), 539–584 | DOI | MR | Zbl