Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2019_19_3_a6, author = {Yu. V. Kosolapov and F. S. Pevnev}, title = {A method of protected distribution of data among unreliable and untrusted nodes}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {326--337}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2019_19_3_a6/} }
TY - JOUR AU - Yu. V. Kosolapov AU - F. S. Pevnev TI - A method of protected distribution of data among unreliable and untrusted nodes JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2019 SP - 326 EP - 337 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2019_19_3_a6/ LA - en ID - ISU_2019_19_3_a6 ER -
%0 Journal Article %A Yu. V. Kosolapov %A F. S. Pevnev %T A method of protected distribution of data among unreliable and untrusted nodes %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2019 %P 326-337 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2019_19_3_a6/ %G en %F ISU_2019_19_3_a6
Yu. V. Kosolapov; F. S. Pevnev. A method of protected distribution of data among unreliable and untrusted nodes. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 3, pp. 326-337. http://geodesic.mathdoc.fr/item/ISU_2019_19_3_a6/
[1] Subramanian A., McLaughlin S. W., MDS codes on the erasure-erasure wiretap channel, 2009, arXiv: 0902.3286 [cs.IT]
[2] Korzhik V., Yakovlev V., “Nonasymptotic estimates of information protection efficiency for the wire-tap channel concept”, Advances in Cryptology – AUSCRYPT '92 (1992), Lecture Notes in Computer Science, 718, eds. Seberry J., Zheng Y., 1993, 183–195 | DOI | MR
[3] Ozarov L. H., Wyner A. D., “Wire-Tap Channel II”, Advances in Cryptology – EUROCRYPT 1984, Lecture Notes in Computer Science, 209, eds. Beth T., Cot N., Ingemarsson I., 1984, 33–55 | DOI | MR
[4] Wei V. K., “Generalized Hamming Weights for Linear Codes”, IEEE Trans. Inform. Theory, 37:5 (1991), 1412–1418 | DOI | MR | Zbl
[5] Forney G. D., “Dimension/Length Profiles and Trellis Complexity of Linear Block Codes”, IEEE Trans. Inform. Theory, 40:6 (1994), 1741–1752 | DOI | MR | Zbl
[6] Luo Y., Mitrpant C., Hav Vinck A. J., Chen K., “Some New characters on the wire-tap channel of type II”, IEEE Trans. Inform. Theory, 51:3 (2005), 1222–1229 | DOI | MR | Zbl
[7] Hu P., Sung C. W., Ho S.-W., Chan T. H., “Optimal Coding and Allocation for Perfect Secrecy in Multiple Clouds”, IEEE Transactions on Information Forensics and Security, 11:2 (2016), 388–399 | DOI
[8] Kosolapov Yu. V., “Codes for a generalized wire-tap channel model”, Problems of Information Transmission, 51:1 (2015), 20–24 | DOI | MR | Zbl
[9] Kosolapov Yu. V., Pozdnyakov A. V., “Evaluation of resistance of code noising in the distributed data storage”, Systems and Means of Informatics, 25:4 (2015), 158–174 (in Russian) | DOI | MR
[10] Gazaryan Yu. O., Kosolapov Yu. V., “On the experimental estimation of the lower bound for the maximum number of messages in a scheme aimed at data protection against spoofing”, Computational Technologies, 20:6 (2015), 5–21 (in Russian) | Zbl
[11] Bellare M., Tessaro S., Vardy A., A Cryptographic Treatment of the Wiretap Channel, 2012, arXiv: 1201.2205 [cs.IT] | MR
[12] Barg S., “Some new NP-complete coding problems”, Problems of Information Transmission, 30:3 (1994), 209–214 | MR | Zbl
[13] Sendrier N., Simos D. E., “The Hardness of Code Equivalence over $\mathbb{F}_q$ and Its Application to Code-Based Cryptography”, Post-Quantum Cryptography. PQCrypto 2013, Lecture Notes in Computer Science, 7932, ed. Gaborit P., 2013, 203–216 | MR | Zbl
[14] Lenstra A. K., Verheul E. R., “Selecting Cryptographic Key Sizes”, J. Cryptology, 14 (2001), 255–293 | DOI | MR | Zbl