Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2019_19_3_a4, author = {E. Yu. Krylova and I. V. Kravtsova and T. V. Yakovleva and V. A. Krysko}, title = {Theory of vibrations of carbon nanotubes like flexible micropolar mesh cylindrical shells taking into account shift}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {305--316}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2019_19_3_a4/} }
TY - JOUR AU - E. Yu. Krylova AU - I. V. Kravtsova AU - T. V. Yakovleva AU - V. A. Krysko TI - Theory of vibrations of carbon nanotubes like flexible micropolar mesh cylindrical shells taking into account shift JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2019 SP - 305 EP - 316 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2019_19_3_a4/ LA - ru ID - ISU_2019_19_3_a4 ER -
%0 Journal Article %A E. Yu. Krylova %A I. V. Kravtsova %A T. V. Yakovleva %A V. A. Krysko %T Theory of vibrations of carbon nanotubes like flexible micropolar mesh cylindrical shells taking into account shift %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2019 %P 305-316 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2019_19_3_a4/ %G ru %F ISU_2019_19_3_a4
E. Yu. Krylova; I. V. Kravtsova; T. V. Yakovleva; V. A. Krysko. Theory of vibrations of carbon nanotubes like flexible micropolar mesh cylindrical shells taking into account shift. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 3, pp. 305-316. http://geodesic.mathdoc.fr/item/ISU_2019_19_3_a4/
[1] Belostochny G. N., Myltcina O. A., “The Geometrical Irregular Plates under the Influence of the Quick Changed on the Time Coordinate Forces and Temperature Effects”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 15:4 (2015), 442–451 (in Russian) | DOI
[2] Krylova E. Y., Yakovleva T. V., Bazhenov V. G., “The influence of the noise field on parametric oscillations of flexible square plates”, Russian Aeronautics, 60:2 (2017), 177–183 | DOI
[3] Krylova E. Y., Papkova I. V., Erofeev N. P., Zakharov V. M., Krysko V. A., “Complex fluctuations of flexible plates under longitudinal loads with account for white noise”, Journal of Applied Mechanics and Technical Physics, 57:4 (2016), 714–719 | DOI | MR
[4] Awrejcewicz J., Krysko A. V., Krysko V. A., Krylova E. Yu., “Turbulent phenomena in flexible plates and shells”, Springer Proceedings in Mathematics and Statistics, 12, 2014, 49–76 | DOI | MR
[5] Krysko A. V., Awrejcewicz J., Zhigalov M. V., Pavlov S. P., Krysko V. A., “Nonlinear behaviour of different flexible size-dependent beams models based on the modified couple stress theory. Part 1. Governing equations and static analysis of flexible beams”, International Journal of Non-Linear Mechanics, 93 (2017), 96–105
[6] Krysko A. V., Awrejcewicz J., Zhigalov M. V., Pavlov S. P., Krysko V. A., “Nonlinear behaviour of different flexible size-dependent beams models based on the modified couple stress theory. Part 2. Chaotic dynamics of flexible beams”, International Journal of Non-Linear Mechanics, 93 (2017), 106–212 | MR
[7] Zhou X., Wang L., “Vibration and stability of micro-scale cylindrical shells conveying fluid based on modified couple stress theory”, Micro and Nano Letters, 7:7 (2012), 679–684 | DOI | MR
[8] Safarpour H., Mohammadi K., Ghadiri M., “Temperature-dependent vibration analysis of a FG viscoelastic cylindrical microshell under various thermal distribution via modified length scale parameter: a numerical solution”, Journal of the Mechanical Behavior of Materials, 26:1-2 (2017), 9–24 | DOI
[9] Sahmani S., Ansari R., Gholami R., Darvizeh A., “Dynamic stability analysis of functionally graded higher-order shear deformable microshells based on the modified couple stress elasticity theory”, Composites : Part B, 51 (2013), 44–53 | DOI | MR
[10] Majeed A., Zeeshan A., Mubbashir S., “Vibration analysis of carbon nanotubes based on cylindrical shell by inducting Winkler and Pasternak foundations”, Mechanics of Advanced Materials and Structures, 2018, 1140–1145 | DOI
[11] Hussain M., Naeem M. N., Shahzad A., He M., “Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach”, IP Advances, 7:4 (2017), 045114 | DOI
[12] Ninh D. G., Bich D. H., “Characteristics of nonlinear vibration of nanocomposite cylindrical shells with piezoelectric actuators under thermo-mechanical loads”, Aerospace Science and Technology, 77 (2018), 305–312 | DOI
[13] Peddieson J., Buchanan R., McNitt R. P., “Application of nonlocal continuum models to nanotechnology”, Int. J. Eng. Sci., 41 (2003), 595–609 | DOI
[14] Bazehhour B. G., Mousavi S. M., Farshidianfar A., “Free vibration of high-speed rotating Timoshenko shaft with various boundary conditions: effect of centrifugally induced axial force”, Archive of Applied Mechanics, 84:12 (2014), 1691–1700 | DOI
[15] Karlicic D., Kozic P., Pavlovic R., “Flexural vibration and buckling analysis of single-walled carbon nanotubes using different gradient elasticity theories based on reddy and huu-tai formulations”, Journal of Theoretical and Applied Mechanics, 51:1 (2015), 217–233 | DOI | MR
[16] Ivanova E. A., Morozov N. F., Semenov B. N., Firsova A. D., “Determination of elastic moduli of nanostructures: theoretical estimates and experimental techniques”, Mech. Solids, 40:4 (2005), 60–68
[17] Daneshmand F., Rafiei M., Mohebpour S. R., Heshmati M., “Stress and strain-inertia gradient elasticity in free vibration analysis of single walled carbon nanotubes with first order shear deformation shell theory”, Appl. Math. Modelling, 37:16–17 (2013), 7983–8003 | DOI | MR | Zbl
[18] Erofeev V. I., Wave processes in solids with a microstructure, Moscow Univ. Press, M., 1999, 328 pp. (in Russian)
[19] Ostrogradsku M., Mémoires de l'Académie impériale des sciences de St. Petersbourg, 8:3 (1850), 33–48
[20] Hamilton W., Report of the Fourth Meeting of the British Association for the Advancement of Science, L., 1835
[21] Sun C. T., Zhang Y., “Size-dependent elastic moduli of platelike nanomaterials”, J. Appl. Phys., 3 (2003), 1212–1218
[22] Krylova E. Yu., Papkova I. V., Saltykov O. A., Sinichkina A. O., Krysko V. A., “Mathematical model of vibrations of the cylindrical shells, which are dimensionally dependent with the net structure, taking into account the Kirchhoff – Love hypotheses”, Nonlinear World, 16:4 (2018), 17–28 (in Russian) | DOI
[23] Pshenichnov G. I., Theory of thin elastic mesh shells and plates, Nauka, M., 1982, 352 pp. (in Russian)