Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2019_19_3_a2, author = {A. P. Khromov}, title = {On classic solution of the problem for a homogeneous wave equation with fixed end-points and zero initial velocity}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {280--288}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2019_19_3_a2/} }
TY - JOUR AU - A. P. Khromov TI - On classic solution of the problem for a homogeneous wave equation with fixed end-points and zero initial velocity JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2019 SP - 280 EP - 288 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2019_19_3_a2/ LA - ru ID - ISU_2019_19_3_a2 ER -
%0 Journal Article %A A. P. Khromov %T On classic solution of the problem for a homogeneous wave equation with fixed end-points and zero initial velocity %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2019 %P 280-288 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2019_19_3_a2/ %G ru %F ISU_2019_19_3_a2
A. P. Khromov. On classic solution of the problem for a homogeneous wave equation with fixed end-points and zero initial velocity. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 3, pp. 280-288. http://geodesic.mathdoc.fr/item/ISU_2019_19_3_a2/
[1] Khromov A. P., “On the convergence of the formal Fourier solution of the wave equation with a summable potential”, Comput. Math. and Math. Phys., 56:10 (2016), 1778–1792 | DOI | DOI | MR | Zbl
[2] Chernyatin V. A., Justification of the Fourier Method in a Mixed Problem for Partial Differential Equations, Moscow Univ. Press, M., 1991, 112 pp. (in Russian)
[3] Krylov A. N., On Some Differential Equations of Mathematical Physics Having Applications in Engineering, GITTL, M.–L., 1950, 368 pp. (in Russian) | MR
[4] Burlutskaya M. S., Khromov A. P., “Rezolventny approach in the Fourier method”, Dokl. Math., 90:2 (2014), 545–548 | DOI | DOI | MR | Zbl
[5] Burlutskaya M. S., Khromov A. P., “The resolvent approach for the wave equation”, Comput. Math. and Math. Phys., 55:2 (2015), 227–239 | DOI | DOI | MR | Zbl
[6] Euler L., Differential calculus, GITTL, M.–L., 1949, 280 pp. (in Russian)
[7] Khromov A. P., “Divergent series and functional equations related to analogues of a geometric progression”, Proc. Intern. Conf. “Pontryaginskie chteniya – XXX”, Izdatel'skij dom VGU, Voronezh, 2019, 291–300 (in Russian)
[8] Kornev V. V., Khromov A. P., “Classical and Generalized Solutions of a Mixed Problem for a Nonhomogeneous Wave Equation”, Comput. Math. and Math. Phys., 59:2 (2019), 275–289 | DOI | DOI | MR | MR | Zbl
[9] Khromov A. P., “Necessary and Sufficient Conditions for the Existence of a Classical Solution of the Mixed Problem for the Homogeneous Wave Equation with an Integrable Potential”, Differential Equations, 55:5 (2019), 703–717 | DOI | DOI | MR | Zbl