Value regions in classes of conformal mappings
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 3, pp. 258-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

The survey is devoted to most recent results in the value region problem over different classes of holomorphic univalent functions represented by solutions to the Loewner differential equations both in the radial and chordal versions. It is important also to present classical and modern solution methods and to compare their efficiency. More details are concerned with optimization methods and the Pontryagin maximum principle, in particular. A value region is the set $\{f(z_0)\}$ of all possible values for the functional $f\mapsto f(z_0)$ where $z_0$ is a fixed point either in the upper half-plane for the chordal case or in the unit disk for the radial case, and $f$ runs through a class of conformal mappings. Solutions to the Loewner differential equations form dense subclasses of function families under consideration. The coefficient value regions $\{(a_2,\dots,a_n):f(z)=z+\sum_{n=2}^{\infty}a_nz^n\}$, $|z|1$, are the part of the field closely linked with extremal problems and the Bombieri conjecture about the structure of the coefficient region for the class $S$ in a neighborhood of the point $(2,\dots,n)$ corresponding to the Koebe function.
@article{ISU_2019_19_3_a1,
     author = {D. V. Prokhorov},
     title = {Value regions in classes of conformal mappings},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {258--279},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ISU_2019_19_3_a1/}
}
TY  - JOUR
AU  - D. V. Prokhorov
TI  - Value regions in classes of conformal mappings
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2019
SP  - 258
EP  - 279
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2019_19_3_a1/
LA  - en
ID  - ISU_2019_19_3_a1
ER  - 
%0 Journal Article
%A D. V. Prokhorov
%T Value regions in classes of conformal mappings
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2019
%P 258-279
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2019_19_3_a1/
%G en
%F ISU_2019_19_3_a1
D. V. Prokhorov. Value regions in classes of conformal mappings. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 3, pp. 258-279. http://geodesic.mathdoc.fr/item/ISU_2019_19_3_a1/

[1] Nauka, M., 1966, 628 pp. | MR | Zbl

[2] Aleksandrov I. A., Parametric continuations in the theory of univalent functions, Nauka, M., 1976, 344 pp. (in Russian) | MR | Zbl

[3] Duren P. L., Univalent functions, Springer Verlag, New York, 1983, 382 pp. | MR | Zbl

[4] Pommerenke Ch., Univalent functions, Vandenhoeck Ruprecht, Göttingen, 1975, 376 pp. | MR | Zbl

[5] Rogosinski W., “Zum Schwarzen Lemma”, Jahresber. Deutsche Math-Verein., 44 (1934), 258–261

[6] Grunsky H., “Neue Abschätzungen zur konformen Abbildung ein- und mehrfach zusammenhängender Bereiche”, Schr. Math. Inst. u Inst. Angew. Math. Univ. Berlin, 1 (1932), 95–140

[7] Popov V. I., “Value domain of a system of functionals on the class $S$”, Proceedings of Tomsk University. Issues of the geometric function theory, 182:3 (1965), 106–132 (in Russian) | MR | Zbl

[8] Gutlyanskii V. Ya., “Parametric representation of univalent functions”, Soviet Math. Dokl., 11:5 (1970), 1273–1276 | MR

[9] Schaeffer A. C., Spencer D. C., Coefficient regions for schlicht functions, Coll. Publ., 35, Amer. Math. Soc., New York, 1950, 325 pp. | MR | Zbl

[10] Loewner K., “Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I”, Math. Ann., 89:1–2 (1923), 103–121 | MR | Zbl

[11] Kufarev P. P., “On one-parameter families of analytic functions”, Mat. Sbornik, N. S., 13:1(55) (1943), 87–118 (in Russian) | MR

[12] Pommerenke Ch., “Über die Subordination analytischer Funktionen”, J. Reine Angew. Math., 218 (1965), 159–173 | MR | Zbl

[13] Kufarev P. P., “A remark on integrals of the Loewner equation”, Doklady Akad. Nauk SSSR, 57:7 (1947), 655–656 (in Russian) | MR | Zbl

[14] Goryainov V. V., Gutlyanskii V. Ya., “On extremal problems in the class $S_M$”, Matematicheskii sbornik, Naukova dumka, Kiev, 1976, 242–246 (in Russian) | MR

[15] Roth O., Schleissinger S., “Rogosinski's lemma for univalent functions, hyperbolic Archimedean spirals and the Loewner equation”, Bull. London Math. Soc., 46:5 (2014), 1099–1109 | DOI | MR | Zbl

[16] Prokhorov D., Samsonova K., “Value range of solutions to the chordal Loewner equation”, J. Math. Anal Appl., 428:2 (2015), 910–919 | DOI | MR | Zbl

[17] Zherdev A., “Value range of solutions to the chordal Loewner equation with restriction on the driving function”, Probl. Anal. Issues Anal., 8(26):2 (2019), 92–104 | DOI | MR

[18] Koch J. D., Value regions for schlicht functions, Dissertationsschrift zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg, Würzburg, 2016, 93 pp.

[19] Goodman G. S., Univalent functions and optimal control, Ph.D. Thesis, Stanford University, Ann Arbor, MI; ProQuest LLC, 1967 | MR

[20] Friedland S., Schiffer M., “Global results in control theory with applications to univalent functions”, Bull. Amer. Math. Soc., 82:6 (1976), 913–915 | MR | Zbl

[21] Friedland S., Schiffer M., “On coefficient regions of univalent functions”, J. Anal. Math., 31 (1977), 125–168 | MR | Zbl

[22] Roth O., Control Theory in $\mathcal H(\mathbb D)$, Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg, Würzburg, 1998, 178 pp.

[23] Math. USSR-Sb., 71:2 (1992), 499–516 | MR | Zbl | Zbl

[24] Prokhorov D., Reachable set methods in extremal problems for univalent functions, Saratov Univ. Press, Saratov, 1993, 228 pp. | MR | Zbl

[25] Schiffer M., “Sur l'équation différentielle de M. Löwner”, C. R. Acad. Sci. Paris, 221 (1945), 369–371 | MR

[26] Prokhorov D., Vasil'ev A., “Univalent functions and integrable systems”, Commun. Math. Phys., 262:2 (2006), 393–410 | DOI | MR | Zbl

[27] Roth O., Is there a Teichmüller principle in higher dimension?, Geometric function theory in higher dimension, Springer INdAM Series, 26, ed. F. Bracci, Cham, 2017, 87–105 | DOI | MR | Zbl

[28] Popov V. I., “L. S. Pontryagin's maximum principle in the theory of univalent functions”, Soviet Math. Dokl., 10 (1969), 1161–1164 | MR | Zbl

[29] Prokhorov D., “The method of optimal control in an extremal problem on a class of univalent functions”, Soviet Math. Dokl., 29 (1984), 301–303 | MR | Zbl

[30] Prokhorov D., “Bounded univalent functions”, Handbook of complex analysis: Geometric function theory, v. 1, North Holland, Amsterdam, 2002, 207–228 | MR | Zbl

[31] Koch J., Schleissinger S., “Value ranges of univalent self-mappings of the unit disc”, J. Math. Anal. Appl., 433:2 (2016), 1772–1789 | DOI | MR | Zbl

[32] Koch J., Schleissinger S., “Three value ranges for symmetric self-mappings of the unit disk”, Proc. Amer. Math. Soc., 145:4 (2017), 1747–1761 | DOI | MR | Zbl

[33] Fedorov S. I., “The moduli of certain families of curves and the range of $\{f(\zeta_0)\}$ in the class of univalent functions with real coefficients”, J. Soviet Math., 36 (1987), 282–291 | Zbl

[34] Jenkins J. A., “On univalent functions with real coefficients”, Ann. Math., 71 (1960), 1–15 | MR | Zbl

[35] Prokhorov D., Samsonova K., “A description method in the value region problem”, Complex Anal. Oper. Theory, 11:7 (2017), 1613–1622 | DOI | MR | Zbl

[36] Cowen C. C., Pommerenke Ch., “Inequalities for the angular derivative of an analytic function in the unit disk”, J. London Math. Soc., 26:2 (1982), 271–289 | DOI | MR | Zbl

[37] Goryainov V. V., “Fractional iterates of functions that are analytic in the unit disk with given fixed points”, Math. USSR-Sb., 74:1 (1993), 29–46 | DOI | MR

[38] Gumenyuk P., Prokhorov D., “Value regions of univalent self-maps with two boundary fixed points”, Ann. Acad. Sci. Fenn. Math., 43:1 (2018), 451–462 | DOI | MR | Zbl

[39] Frolova A., Levenshtein M., Shoikhet D., Vasil'ev A., “Boundary distortion estimates for holomorphic maps”, Complex Anal. Oper. Theory, 8:5 (2014), 1129–1149 | DOI | MR | Zbl

[40] Goryainov V. V., Kudryavtseva O. S., “One-parameter semigroups of analytic functions, fixed points and the Koenigs function”, Sb. Math., 202:7–8 (2011), 971–1000 | DOI | MR | Zbl

[41] Goryainov V. V., “Evolution families of conformal mappings with fixed points and the Loewner – Kufarev equation”, Sb. Math., 206:1–2 (2015), 33–60 | DOI | MR | Zbl

[42] Goryainov V. V., “Holomorphic mappings of the unit disc into itself with two fixed points”, Sb. Math., 208:3 (2017), 360–376 | DOI | MR | Zbl

[43] Babenko K. I., The theory of extremal problems for univalent functions of class $S$, Amer. Math. Soc., Providence, RI, 1975, 320 pp. | MR

[44] Markina I., Prokhorov D., Vasil'ev A., “Sub-Riemannian geometry of the coefficients of univalent functions”, J. Funct. Anal., 245:2 (2007), 475–492 | DOI | MR | Zbl

[45] Takebe T., Teo L.-P., Zabrodin A., “Löwner equation and dispersionless hierarchies”, J. Phys. A: Math. Theor., 39:37 (2006), 11479–11501 | DOI | MR | Zbl

[46] Pavlov M. V., Prokhorov D. V., Vasil'ev A. Yu., Zakharov A. M., “Löwner evolution and finite dimensional reductions of integrable systems”, Theor. Math. Phys., 181:1 (2014), 1263–1278 | DOI | MR | Zbl

[47] Bombieri E., “On the local maximum property of the Koebe function”, Invent. Math., 4 (1967), 26–67 | MR | Zbl

[48] Prokhorov D., Roth O., “On the local extremum property of the Koebe function”, Math. Proc. Cambr. Phil. Soc., 136:2 (2004), 301–312 | DOI | MR | Zbl

[49] Greiner R., Roth O., “On support points of univalent functions and a disproof of a conjecture of Bombieri”, Proc. Amer. Math. Soc., 129:12 (2001), 3657–3664 | DOI | MR | Zbl

[50] Gordienko V., Prokhorov D., “Analogy of Bombieri's number for bounded univalent functions”, Lobachevskii J. Math., 38:3 (2017), 429–434 | DOI | MR | Zbl

[51] Gordienko V., Prokhorov D., “The Bombieri Problem for Bounded Univalent Functions”, Math. Notes, 105:3–4 (2019), 442–450 | DOI | MR

[52] Bshouty D., Hengartner W., “A variation of the Koebe mapping in a dense subclass of $S$”, Canad J. Math., 39:1 (1987), 54–73 | DOI | MR | Zbl

[53] Prokhorov D., Vasil'ev A., “Optimal control in Bombieri's and Tammi's conjectures”, Georgian Math. J., 12:4 (2005), 743–761 | DOI | MR | Zbl

[54] Aharonov D., Bshouty D., “A problem of Bombieri on univalent functions”, Comput. Methods Funct. Theory, 16:4 (2016), 677–688 | DOI | MR | Zbl

[55] Leung Y.-J., “On the Bombieri numbers for the class $S$”, J. Anal., 24:2 (2016), 229–250 | DOI | MR | Zbl

[56] Efraimidis I., “On the failure of Bombieri's conjecture for univalent functions”, Comput. Methods Funct. Theory, 18:3 (2018), 427–438 | DOI | MR | Zbl

[57] Efraimidis I., Pastor C., Some more counterexamples for Bombieri's conjecture on univalent functions, 28 Oct. 2017, arXiv: 1710.10426v1 [math.CV] | MR | Zbl

[58] Prokhorov D., “Necessary criteria for the Bombieri conjecture”, Anal. Math. Phys., 18:4 (2018), 679–690 | DOI | MR