Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2019_19_3_a1, author = {D. V. Prokhorov}, title = {Value regions in classes of conformal mappings}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {258--279}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2019_19_3_a1/} }
TY - JOUR AU - D. V. Prokhorov TI - Value regions in classes of conformal mappings JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2019 SP - 258 EP - 279 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2019_19_3_a1/ LA - en ID - ISU_2019_19_3_a1 ER -
D. V. Prokhorov. Value regions in classes of conformal mappings. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 3, pp. 258-279. http://geodesic.mathdoc.fr/item/ISU_2019_19_3_a1/
[1] Nauka, M., 1966, 628 pp. | MR | Zbl
[2] Aleksandrov I. A., Parametric continuations in the theory of univalent functions, Nauka, M., 1976, 344 pp. (in Russian) | MR | Zbl
[3] Duren P. L., Univalent functions, Springer Verlag, New York, 1983, 382 pp. | MR | Zbl
[4] Pommerenke Ch., Univalent functions, Vandenhoeck Ruprecht, Göttingen, 1975, 376 pp. | MR | Zbl
[5] Rogosinski W., “Zum Schwarzen Lemma”, Jahresber. Deutsche Math-Verein., 44 (1934), 258–261
[6] Grunsky H., “Neue Abschätzungen zur konformen Abbildung ein- und mehrfach zusammenhängender Bereiche”, Schr. Math. Inst. u Inst. Angew. Math. Univ. Berlin, 1 (1932), 95–140
[7] Popov V. I., “Value domain of a system of functionals on the class $S$”, Proceedings of Tomsk University. Issues of the geometric function theory, 182:3 (1965), 106–132 (in Russian) | MR | Zbl
[8] Gutlyanskii V. Ya., “Parametric representation of univalent functions”, Soviet Math. Dokl., 11:5 (1970), 1273–1276 | MR
[9] Schaeffer A. C., Spencer D. C., Coefficient regions for schlicht functions, Coll. Publ., 35, Amer. Math. Soc., New York, 1950, 325 pp. | MR | Zbl
[10] Loewner K., “Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I”, Math. Ann., 89:1–2 (1923), 103–121 | MR | Zbl
[11] Kufarev P. P., “On one-parameter families of analytic functions”, Mat. Sbornik, N. S., 13:1(55) (1943), 87–118 (in Russian) | MR
[12] Pommerenke Ch., “Über die Subordination analytischer Funktionen”, J. Reine Angew. Math., 218 (1965), 159–173 | MR | Zbl
[13] Kufarev P. P., “A remark on integrals of the Loewner equation”, Doklady Akad. Nauk SSSR, 57:7 (1947), 655–656 (in Russian) | MR | Zbl
[14] Goryainov V. V., Gutlyanskii V. Ya., “On extremal problems in the class $S_M$”, Matematicheskii sbornik, Naukova dumka, Kiev, 1976, 242–246 (in Russian) | MR
[15] Roth O., Schleissinger S., “Rogosinski's lemma for univalent functions, hyperbolic Archimedean spirals and the Loewner equation”, Bull. London Math. Soc., 46:5 (2014), 1099–1109 | DOI | MR | Zbl
[16] Prokhorov D., Samsonova K., “Value range of solutions to the chordal Loewner equation”, J. Math. Anal Appl., 428:2 (2015), 910–919 | DOI | MR | Zbl
[17] Zherdev A., “Value range of solutions to the chordal Loewner equation with restriction on the driving function”, Probl. Anal. Issues Anal., 8(26):2 (2019), 92–104 | DOI | MR
[18] Koch J. D., Value regions for schlicht functions, Dissertationsschrift zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg, Würzburg, 2016, 93 pp.
[19] Goodman G. S., Univalent functions and optimal control, Ph.D. Thesis, Stanford University, Ann Arbor, MI; ProQuest LLC, 1967 | MR
[20] Friedland S., Schiffer M., “Global results in control theory with applications to univalent functions”, Bull. Amer. Math. Soc., 82:6 (1976), 913–915 | MR | Zbl
[21] Friedland S., Schiffer M., “On coefficient regions of univalent functions”, J. Anal. Math., 31 (1977), 125–168 | MR | Zbl
[22] Roth O., Control Theory in $\mathcal H(\mathbb D)$, Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg, Würzburg, 1998, 178 pp.
[23] Math. USSR-Sb., 71:2 (1992), 499–516 | MR | Zbl | Zbl
[24] Prokhorov D., Reachable set methods in extremal problems for univalent functions, Saratov Univ. Press, Saratov, 1993, 228 pp. | MR | Zbl
[25] Schiffer M., “Sur l'équation différentielle de M. Löwner”, C. R. Acad. Sci. Paris, 221 (1945), 369–371 | MR
[26] Prokhorov D., Vasil'ev A., “Univalent functions and integrable systems”, Commun. Math. Phys., 262:2 (2006), 393–410 | DOI | MR | Zbl
[27] Roth O., Is there a Teichmüller principle in higher dimension?, Geometric function theory in higher dimension, Springer INdAM Series, 26, ed. F. Bracci, Cham, 2017, 87–105 | DOI | MR | Zbl
[28] Popov V. I., “L. S. Pontryagin's maximum principle in the theory of univalent functions”, Soviet Math. Dokl., 10 (1969), 1161–1164 | MR | Zbl
[29] Prokhorov D., “The method of optimal control in an extremal problem on a class of univalent functions”, Soviet Math. Dokl., 29 (1984), 301–303 | MR | Zbl
[30] Prokhorov D., “Bounded univalent functions”, Handbook of complex analysis: Geometric function theory, v. 1, North Holland, Amsterdam, 2002, 207–228 | MR | Zbl
[31] Koch J., Schleissinger S., “Value ranges of univalent self-mappings of the unit disc”, J. Math. Anal. Appl., 433:2 (2016), 1772–1789 | DOI | MR | Zbl
[32] Koch J., Schleissinger S., “Three value ranges for symmetric self-mappings of the unit disk”, Proc. Amer. Math. Soc., 145:4 (2017), 1747–1761 | DOI | MR | Zbl
[33] Fedorov S. I., “The moduli of certain families of curves and the range of $\{f(\zeta_0)\}$ in the class of univalent functions with real coefficients”, J. Soviet Math., 36 (1987), 282–291 | Zbl
[34] Jenkins J. A., “On univalent functions with real coefficients”, Ann. Math., 71 (1960), 1–15 | MR | Zbl
[35] Prokhorov D., Samsonova K., “A description method in the value region problem”, Complex Anal. Oper. Theory, 11:7 (2017), 1613–1622 | DOI | MR | Zbl
[36] Cowen C. C., Pommerenke Ch., “Inequalities for the angular derivative of an analytic function in the unit disk”, J. London Math. Soc., 26:2 (1982), 271–289 | DOI | MR | Zbl
[37] Goryainov V. V., “Fractional iterates of functions that are analytic in the unit disk with given fixed points”, Math. USSR-Sb., 74:1 (1993), 29–46 | DOI | MR
[38] Gumenyuk P., Prokhorov D., “Value regions of univalent self-maps with two boundary fixed points”, Ann. Acad. Sci. Fenn. Math., 43:1 (2018), 451–462 | DOI | MR | Zbl
[39] Frolova A., Levenshtein M., Shoikhet D., Vasil'ev A., “Boundary distortion estimates for holomorphic maps”, Complex Anal. Oper. Theory, 8:5 (2014), 1129–1149 | DOI | MR | Zbl
[40] Goryainov V. V., Kudryavtseva O. S., “One-parameter semigroups of analytic functions, fixed points and the Koenigs function”, Sb. Math., 202:7–8 (2011), 971–1000 | DOI | MR | Zbl
[41] Goryainov V. V., “Evolution families of conformal mappings with fixed points and the Loewner – Kufarev equation”, Sb. Math., 206:1–2 (2015), 33–60 | DOI | MR | Zbl
[42] Goryainov V. V., “Holomorphic mappings of the unit disc into itself with two fixed points”, Sb. Math., 208:3 (2017), 360–376 | DOI | MR | Zbl
[43] Babenko K. I., The theory of extremal problems for univalent functions of class $S$, Amer. Math. Soc., Providence, RI, 1975, 320 pp. | MR
[44] Markina I., Prokhorov D., Vasil'ev A., “Sub-Riemannian geometry of the coefficients of univalent functions”, J. Funct. Anal., 245:2 (2007), 475–492 | DOI | MR | Zbl
[45] Takebe T., Teo L.-P., Zabrodin A., “Löwner equation and dispersionless hierarchies”, J. Phys. A: Math. Theor., 39:37 (2006), 11479–11501 | DOI | MR | Zbl
[46] Pavlov M. V., Prokhorov D. V., Vasil'ev A. Yu., Zakharov A. M., “Löwner evolution and finite dimensional reductions of integrable systems”, Theor. Math. Phys., 181:1 (2014), 1263–1278 | DOI | MR | Zbl
[47] Bombieri E., “On the local maximum property of the Koebe function”, Invent. Math., 4 (1967), 26–67 | MR | Zbl
[48] Prokhorov D., Roth O., “On the local extremum property of the Koebe function”, Math. Proc. Cambr. Phil. Soc., 136:2 (2004), 301–312 | DOI | MR | Zbl
[49] Greiner R., Roth O., “On support points of univalent functions and a disproof of a conjecture of Bombieri”, Proc. Amer. Math. Soc., 129:12 (2001), 3657–3664 | DOI | MR | Zbl
[50] Gordienko V., Prokhorov D., “Analogy of Bombieri's number for bounded univalent functions”, Lobachevskii J. Math., 38:3 (2017), 429–434 | DOI | MR | Zbl
[51] Gordienko V., Prokhorov D., “The Bombieri Problem for Bounded Univalent Functions”, Math. Notes, 105:3–4 (2019), 442–450 | DOI | MR
[52] Bshouty D., Hengartner W., “A variation of the Koebe mapping in a dense subclass of $S$”, Canad J. Math., 39:1 (1987), 54–73 | DOI | MR | Zbl
[53] Prokhorov D., Vasil'ev A., “Optimal control in Bombieri's and Tammi's conjectures”, Georgian Math. J., 12:4 (2005), 743–761 | DOI | MR | Zbl
[54] Aharonov D., Bshouty D., “A problem of Bombieri on univalent functions”, Comput. Methods Funct. Theory, 16:4 (2016), 677–688 | DOI | MR | Zbl
[55] Leung Y.-J., “On the Bombieri numbers for the class $S$”, J. Anal., 24:2 (2016), 229–250 | DOI | MR | Zbl
[56] Efraimidis I., “On the failure of Bombieri's conjecture for univalent functions”, Comput. Methods Funct. Theory, 18:3 (2018), 427–438 | DOI | MR | Zbl
[57] Efraimidis I., Pastor C., Some more counterexamples for Bombieri's conjecture on univalent functions, 28 Oct. 2017, arXiv: 1710.10426v1 [math.CV] | MR | Zbl
[58] Prokhorov D., “Necessary criteria for the Bombieri conjecture”, Anal. Math. Phys., 18:4 (2018), 679–690 | DOI | MR