Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2019_19_2_a6, author = {V. M. Ivanov}, title = {Estimation of quality of non-stationary systems on the return frequency characteristic plane}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {207--216}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2019_19_2_a6/} }
TY - JOUR AU - V. M. Ivanov TI - Estimation of quality of non-stationary systems on the return frequency characteristic plane JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2019 SP - 207 EP - 216 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2019_19_2_a6/ LA - ru ID - ISU_2019_19_2_a6 ER -
%0 Journal Article %A V. M. Ivanov %T Estimation of quality of non-stationary systems on the return frequency characteristic plane %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2019 %P 207-216 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2019_19_2_a6/ %G ru %F ISU_2019_19_2_a6
V. M. Ivanov. Estimation of quality of non-stationary systems on the return frequency characteristic plane. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 2, pp. 207-216. http://geodesic.mathdoc.fr/item/ISU_2019_19_2_a6/
[1] Naumov B. N., Tsypkin Ya. Z., “Frequency criterion for process absolute stability in nonlinear automatic control system”, Automation and Remote Control, 25:6 (1964), 852–867 (in Russian) | MR
[2] Naumov B. N., “An investigation of absolute stability of the equilibrium state in nonlinear automatic control systems by means of logarithmic frequency characteristics”, Autom. Remote Control, 26:4 (1965), 593–601 | MR
[3] Lur'e A. I., Postnikov V. N., “To the theory of stability of adjustable systems”, Journal of Applied Mathematics and Mechanics, 8:3 (1944), 246–248 (in Russian) | Zbl
[4] Letov A. M., Stability of nonlinear adjustable systems, Gosenergoizdat, M., 1955, 312 pp. (in Russian) | MR
[5] Ajzerman M. A., Gantmaher F. R., Absolute stability of adjustable systems, Izd-vo AN SSSR, M., 1963, 140 pp. (in Russian)
[6] Megretski A., Rantzer A., “System analysis via integral quadratic constraints”, IEEE Trans. Automat. Contr., 42:6 (1997), 819–830 | DOI | MR | Zbl
[7] Liu Z., Lü S., Zhong S., Ye M., “Improved Robust Stability Criteria of Uncertain Neutral Systems with Mixed Delays”, Abstr. Appl. Anal., 2009 (2009), 1–18 | DOI | MR
[8] Wu M., He Y., She J.-H., Stability Analysis, Robust Control of Time-Delay Systems, Science Press, Beijing; Springer, L., 2010, 335 pp. | MR | Zbl
[9] Shatyrko A., Khusainov D., “On the Interval Stability of Weak-Nonlinear Control Systems with Aftereffect”, Sci. World J., 2016 (2016), 1–8 | DOI
[10] Popov V. M., “On absolute stability of non-linear automatic control systems”, Automation and Remote Control, 22:8 (1961), 961–979 (in Russian)
[11] Popov V. M., Hyperstability of Automatic Systems, Nauka, M., 1970, 454 pp. (in Russian)
[12] Haddad W. M., Kapila V., “Absolute stability criteria for multiple slope-restricted monotonic nonlinearities”, Proceedings of American Control Conference, v. 1, 1994, 1020–1021 | DOI | MR
[13] D'yakonov V., MATLAB 6: training course, Piter, St. Petersburg, 2001, 592 pp. (in Russian)
[14] D'yakonov V. P., Mathematica 5.1/5.2/6. Programming and mathematical calculations, DMK Press, M., 2008, 576 pp. (in Russian)
[15] V. K. Chemodanov (ed.), The watching drives, in 2 vols., v. 1, Energiya, M., 1976, 480 pp. (in Russian)
[16] Besekerskij V. A., Popov E. P., Theory of systems of automatic control, Nauka, M., 1979, 768 pp. (in Russian)
[17] Tsypkin Ya. Z., Fundamentals of the theory of automatic systems, Nauka, M., 1977, 560 pp. (in Russian)
[18] Voronov A. A., Stability, controllability, observability, Nauka, M., 1979, 336 pp. (in Russian)