Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2019_19_2_a2, author = {V. E. Strukov and I. I. Strukova}, title = {Harmonic analysis of operator semigroups slowly varying at infinity}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {152--163}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2019_19_2_a2/} }
TY - JOUR AU - V. E. Strukov AU - I. I. Strukova TI - Harmonic analysis of operator semigroups slowly varying at infinity JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2019 SP - 152 EP - 163 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2019_19_2_a2/ LA - ru ID - ISU_2019_19_2_a2 ER -
%0 Journal Article %A V. E. Strukov %A I. I. Strukova %T Harmonic analysis of operator semigroups slowly varying at infinity %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2019 %P 152-163 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2019_19_2_a2/ %G ru %F ISU_2019_19_2_a2
V. E. Strukov; I. I. Strukova. Harmonic analysis of operator semigroups slowly varying at infinity. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 2, pp. 152-163. http://geodesic.mathdoc.fr/item/ISU_2019_19_2_a2/
[1] Baskakov A.G., Kaluzhina N.S., “Beurling's theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations”, Math. Notes, 92:5 (2012), 587–605 | DOI | DOI | MR | MR | Zbl
[2] Strukova I. I., “Spectra of algebras of slowly varying and periodic at infinity functions and Banach limits”, Proceedings of Voronezh State University. Ser. Physics. Mathematics, 2015, no. 3, 161–165 (in Russian) | Zbl
[3] Baskakov A., Strukova I., “Harmonic analysis of functions periodic at infinity”, Eurasian Math. J., 7:4 (2016), 9–29 | MR
[4] Strukova I. I., “About Wiener theorem for periodic at infinity functions”, Siberian Math. J., 57:1 (2016), 145–154 | DOI | DOI | MR | Zbl
[5] Strukova I. I., “About harmonic analysis of periodic at infinity functions”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 14:1 (2014), 28–38 (in Russian) | Zbl
[6] Strukova I. I., “Harmonic analysis of periodic at infinity functions from Stepanov spaces”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 17:2 (2017), 172–182 (in Russian) | DOI | MR | Zbl
[7] Baskakov A. G., Kaluzhina N. S., Polyakov D. M., “Slowly varying at infinity operator semigroups”, Russian Math. (Iz. VUZ), 58:7 (2014), 1–10 | DOI | MR | Zbl
[8] Baskakov A. G., “Theory of representations of Banach algebras, and abelian groups and semigroups in the spectral analysis of linear operators”, J. Math. Sci. (N. Y.), 137:4 (2006), 4885–5036 | DOI | MR | Zbl
[9] Baskakov A. G., Krishtal I. A., “Harmonic analysis of causal operators and their spectral properties”, Izv. Math., 69:3 (2005), 439–486 | DOI | DOI | MR | Zbl
[10] Baskakov A. G., Harmonic analysis of linear operators, VSU Publ., Voronezh, 1987, 165 pp. (in Russian) | MR
[11] Baskakov A. G., “Spectral tests for the almost periodicity of the solutions of functional equations”, Math. Notes, 24:1–2 (1978), 606–612 | DOI | MR
[12] Baskakov A. G., “Bernšteĭn-type inequalities in abstract harmonic analysis”, Siberian Math. J., 20:5 (1979), 665–672 | DOI | MR | Zbl
[13] Wiener N., The Fourier Integral and Certain of its Applications, reprint by Dover, CUP Archive, Cambridge Univ. Press, 1988, 201 pp. | MR | Zbl
[14] Chicone C., Latushkin Y., Evolution Semigroups in Dynamical Systems and Differential Equations, Mathematical Surveys and Monographs, 70, Amer. Math. Soc., 1999, 361 pp. | DOI | MR | Zbl
[15] Baskakov A. G., “Semigroups of difference operators in spectral analysis of linear differential operators”, Funct. Anal. Its Appl., 30:3 (1996), 149–157 | DOI | DOI | MR | Zbl
[16] Baskakov A. G., “Linear differential operators with unbounded operator coefficients and semigroups of bounded operators”, Math. Notes, 59:6 (1996), 586–593 | DOI | DOI | MR | Zbl
[17] Baskakov A. G., “Spectral analysis of differential operators with unbounded operator-valued coefficients, difference relations and semigroups of difference relations”, Izv. Math., 73:2 (2009), 215–278 | DOI | DOI | MR | Zbl
[18] Baskakov A. G., “Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations”, Russian Math. Surveys, 68:1 (2013), 69–116 | DOI | DOI | MR | Zbl
[19] Baskakov A. G., “Harmonic and spectral analysis of power bounded operators and bounded semigroups of operators on Banach spaces”, Math. Notes, 97:2 (2015), 164–178 | DOI | DOI | MR | MR | Zbl