Multiple hedging on energy market
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 1, pp. 105-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the calculation of the dynamic hedge ratio based on three different types of volatility models, among which S-BEKK-GARCH model takes into account cross-sectional dependence. The hedging strategy is built for eight stock-futures pairs on energy market in Russia.
@article{ISU_2019_19_1_a8,
     author = {E. Yu. Karatetskaya and V. V. Lakshina},
     title = {Multiple hedging on energy market},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {105--113},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a8/}
}
TY  - JOUR
AU  - E. Yu. Karatetskaya
AU  - V. V. Lakshina
TI  - Multiple hedging on energy market
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2019
SP  - 105
EP  - 113
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a8/
LA  - en
ID  - ISU_2019_19_1_a8
ER  - 
%0 Journal Article
%A E. Yu. Karatetskaya
%A V. V. Lakshina
%T Multiple hedging on energy market
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2019
%P 105-113
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a8/
%G en
%F ISU_2019_19_1_a8
E. Yu. Karatetskaya; V. V. Lakshina. Multiple hedging on energy market. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 1, pp. 105-113. http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a8/

[1] Cotter J., Hanly J., “A utility based approach to energy hedging”, Energy Economics, 34:3 (2012), 817–827 | DOI

[2] Shrestha K., Subramaniam R., Peranginangin Y., “Quantile hedge ratio for energy markets”, Energy Economics, 71:3 (2018), 253–272 | DOI

[3] Ederington L., “The hedging performance of the new futures markets”, The Journal of Finance, 34:1 (1979), 157–170 | DOI

[4] Mohamed El Hedi Arouri, Jamel Jouini, Duc Khuong Nguyen, “On the impacts of oil price fluctuations on European equity markets: Volatility spillover and hedging effectiveness”, Energy Economics, 34:2 (2012), 611–617 | DOI

[5] Khalfaoui R., Boutahar M., Boubaker H., “Analyzing volatility spillovers and hedging between oil and stock markets: Evidence from wavelet analysis”, Energy Economics, 49:C (2015), 540–549 | DOI

[6] Billio M., Casarin R., Osuntuyi A., “Markov switching GARCH models for Bayesian hedging on energy futures markets”, Energy Economics, 70:C (2018), 545–562 | DOI

[7] Olson E., Vivian A. J., Wohar M. E., “The relationship between energy and equity markets: Evidence from volatility impulse response functions”, Energy Economics, 43:C (2014), 297–305 | DOI

[8] Wang Y., Liu L., “Crude oil and world stock markets: volatility spillovers, dynamic correlations, and hedging”, Empirical Economics, 50:4 (2016), 1481–1509 | DOI

[9] Walid Mensi, Shawkat Hammoudeh, Sang Hoon Kang, “Risk spillovers and portfolio management between developed and BRICS stock markets”, The North American Journal of Economics and Finance, 41 (2017), 133–155 | DOI

[10] Ghoddusi H., Emamzadehfard S., “Optimal hedging in the US natural gas market: The effect of maturity and cointegration”, Energy Economics, 63:C (2017), 92–105 | DOI

[11] Arnold M., Stahlberg S., Wied D., “Modeling different kinds of spatial dependence in stock returns”, Empirical Economics, 44:2 (2013), 761–774 | DOI

[12] Fernández-Avilés G., Montero J., Orlov A., “Spatial modeling of stock market comovements”, Finance Research Letters, 9:4 (2012), 202–212 | DOI

[13] Huaying Gu, Zhixue Liu, Yingliang Weng, “Time-varying correlations in global real estate markets: A multivariate GARCH with spatial effects approach”, Physica A: Statistical Mechanics and its Applications, 471 (2017), 460–472 | DOI

[14] Anatolyev S., Khrapov S,, Do spatial structures yield better volatility forecasts?, , 2016 (accessed 18 May 2018) https://editorialexpress.com/cgi-bin/conference/download.cgi?db_name=EEAESEM2016&paper_id=1191

[15] Chen X., Tian Y., “Impact Effects and Spatial Volatility Spillover Effects of Sovereign Credit Rating Downgrades-Empirical Analysis of Multivariate Spatial-BEKK-GARCH Model Based on Symbolic Transfer Entropy”, Boletín Técnico, 55:9 (2017), 614–623

[16] Fernández V., “Multi-period hedge ratios for a multi-asset portfolio when accounting for returns comovement”, The Journal of Futures Markets, 28:2 (2008), 182–207 | DOI

[17] Massimiliano Caporin, Paolo Paruolo, “Proximity-Structured Multivariate Volatility Models”, Econometric Reviews, 34:5 (2015), 559–593 | DOI | MR

[18] Luc Bauwens, Sébastien Laurent, Jeroen V. K. Rombouts, “Multivariate GARCH models: a survey”, Journal of Applied Econometrics, 21:1 (2006), 79–109 | DOI | MR

[19] Borovkova S. A., Lopuhaa Rik, “Spatial GARCH: A Spatial Approach to Multivariate Volatility Modeling”, Econometric Reviews, 34:5 (2015), 559–593 | DOI | MR

[20] Robert F. Engle, Kenneth F. Kroner, “Multivariate Simultaneous Generalized ARCH”, Econometric Theory, 11:1 (1995), 122–150 | DOI | MR

[21] Engle R., “Dynamic Conditional Correlation”, Journal of Business Economic Statistics, 20:3 (2002), 339–350 | DOI | MR

[22] van der Weide R., “GO-GARCH: a multivariate generalized orthogonal GARCH model”, Journal of Applied Econometrics, 17:5 (2002), 549–564 | DOI

[23] Cont R., “Empirical properties of asset returns: stylized facts and statistical issues”, Quantitative Finance, 1:2 (2001), 223–236 | DOI | Zbl

[24] Bessembinder H., Seguin Paul J., “Price Volatility, Trading Volume, and Market Depth: Evidence from Futures Markets”, The Journal of Financial and Quantitative Analysis, 28:1 (1993), 21–39 | DOI