Descent of nanosatellite from low Earth orbit by ion beam
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 1, pp. 82-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the problem of contactless CubSat3U nanosatellites removal from low Earth orbit by means of an ion beam, which is created by the engine of an active spacecraft. The advantage of this method is that there is no need for additional means of docking and gripping. A mathematical model of the nanosatellite plane motion under the action of the ion beam and gravitational forces is developed. Two approaches are used to simulate the ion beam impact on nanosatellite. The first one involves the use of known dimensionless aerodynamic coefficients. The second approach is based on the division of the body into triangles and the calculation of the effect of the beam on each of them. Wherein the hypothesis of a complete diffuse reflection of particles from the surface of the body is used. The descent of the nanosatellite from a low Earth orbit to the surface has been simulated. It is shown that both approaches give close results, in particular, the difference in the descent time from an altitude of 500 km does not exceed 4 %. The closeness of the results allows to use aerodynamic characteristics at the stage of preliminary design of the non-functioning satellite removal missions. The obtained results can be used for the ion beam control development and for modeling the motion of the system of contactless space debris removal.
@article{ISU_2019_19_1_a6,
     author = {V. V. Ryazanov and A. S. Ledkov},
     title = {Descent of nanosatellite from low {Earth} orbit by ion beam},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {82--93},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a6/}
}
TY  - JOUR
AU  - V. V. Ryazanov
AU  - A. S. Ledkov
TI  - Descent of nanosatellite from low Earth orbit by ion beam
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2019
SP  - 82
EP  - 93
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a6/
LA  - ru
ID  - ISU_2019_19_1_a6
ER  - 
%0 Journal Article
%A V. V. Ryazanov
%A A. S. Ledkov
%T Descent of nanosatellite from low Earth orbit by ion beam
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2019
%P 82-93
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a6/
%G ru
%F ISU_2019_19_1_a6
V. V. Ryazanov; A. S. Ledkov. Descent of nanosatellite from low Earth orbit by ion beam. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 1, pp. 82-93. http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a6/

[1] Kessler D. J., Cour-Palais B. G., “Collision frequency of artificial satellites: the creation of a debris belt”, Journal of Geophysical Research, 83:A6 (1978), 2637–2646 | DOI

[2] Veniaminov S. S., Chervonov A. M., Space debris — a threat to mankind, Space Research Institute, RAS, M., 2012, 192 pp. (in Russian)

[3] Shan M., Guo J., Gill E., “Review and comparison of active space debris capturing and removal methods”, Progress in Aerospace Sciences, 80 (2016), 18–32 | DOI

[4] Dudziak R., Tuttle S., Barraclough S., “Harpoon technology development for the active removal of space debris”, Advances in Space Research, 56:5 (2015), 509–527 | DOI

[5] Benvenuto R., Salvi S., Lavagna M., “Dynamics analysis and GNC design of flexible systems for space debris active removal”, Acta Astronautica, 110 (2015), 247–265 | DOI

[6] Larouche B. P., Zhu Z. H., “Autonomous robotic capture of non-cooperative target using visual servoing and motion predictive control”, Autonomous Robots, 37:2 (2014), 157–167 | DOI

[7] McMahan W., Chitrakaran V., Csencsits M., Dawson D., Walker I. D., Jones B. A., Pritts M., Dienno D., Grissom M., Rahn C. D., “Field trials and testing of the octarm continuum manipulator”, IEEE Intern. Conf. on Robotics and Automation (Orlando, Florida, 2006), 2336–2341

[8] Andrenucci M., Pergola P., Ruggiero A., Active removal of space debris-expanding foam application for active debris removal, ESA Final Report, Pisa, 2011, 132 pp. (accessed 21.05.2018) https://www.esa.int/gsp/ACT/doc/ARI/ARI

[9] Phipps C. R., “A laser-optical system to re-enter or lower low earth orbit space debris”, Acta Astronautica, 93 (2014), 418–429 | DOI

[10] Merino M., Ahedo E., Bombardelli C., Urrutxua H., Pelaez J., “Ion Beam Shepherd Satellite for Space Debris Removal”, Progress in Propulsion Physics, 4 (2013), 789–802 | DOI

[11] Schaub H., Parker G. G., King L. B., “Challenges and prospects of Coulomb spacecraft formation control”, Journal of Astronautical Sciences, 52:1 (2004), 169–193 | MR

[12] Aslanov V. S., “Exact solutions and adiabatic invariants for equations of satellite attitude motion under Coulomb torque”, Nonlinear Dynamics, 90:4 (2017), 2545–2556 | DOI | MR

[13] Cichocki F., Merino M., Ahedo E., “Modeling and simulation of EP plasma plume expansion into vacuum”, 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (Cleveland, OH, 2014), 5008–5024 | DOI

[14] Bombardelli C., Merino M., Ahedo E., Pelaez J., Urrutxua H., Iturri-Torreay A., Herrera-Montojoy J., Ariadna call for ideas: Active removal of space debris ion beam shepherd for contactless debris removal, ESA Final Report, Madrid, 2011, 90 pp. (accessed 21.05.2018) https://www.esa.int/gsp/ACT/doc/ARI/ARI

[15] Zuiani F., Vasile M., “Preliminary design of debris removal missions by means of simplified models for low-thrust, many-revolution transfers”, Journal of Aerospace Engineering, 2012 (2012), 836250, 22 pp. | DOI

[16] Cichocki F., Merino M., Ahedo E., Smirnova M., Mingo A., Dobkevicius M., “Electric Propulsion Subsystem Optimization for “Ion Beam Shepherd” missions”, Journal of Propulsion and Power, 33:2 (2016), 370–379 | DOI

[17] Alpatov A., Cichocki F., Fokov A., Khoroshylov S., Merino M., Zakrzhevskii A., “Determination of the force transmitted by an ion thruster plasma plume to an orbital object”, Acta Astronautica, 119 (2016), 241–251 | DOI

[18] Aslanov V. S., Ledkov A. S., “Attitude motion of cylindrical space debris during its removal by ion beam”, Mathematical Problems in Engineering, 2017 (2017), 1986374, 7 pp. | DOI

[19] Aslanov V. S., Ledkov A. S., “Tether-assisted re-entry capsule deorbiting from an elliptical orbit”, Acta Astronautica, 130 (2017), 180–186 | DOI

[20] Lipnickij Ju. M., Krasil'nikov A. V., Pokrovskij A. N., Shmanenkov V. N., Unsteady aerodynamics of ballistic flight, Fizmatlit, M., 2003, 176 pp. (in Russian)

[21] Andreevskij V. V., The dynamics of descent of space vehicles to Earth, Mashinostroenie, M., 1970, 235 pp. (in Russian)