Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2019_19_1_a6, author = {V. V. Ryazanov and A. S. Ledkov}, title = {Descent of nanosatellite from low {Earth} orbit by ion beam}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {82--93}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a6/} }
TY - JOUR AU - V. V. Ryazanov AU - A. S. Ledkov TI - Descent of nanosatellite from low Earth orbit by ion beam JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2019 SP - 82 EP - 93 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a6/ LA - ru ID - ISU_2019_19_1_a6 ER -
%0 Journal Article %A V. V. Ryazanov %A A. S. Ledkov %T Descent of nanosatellite from low Earth orbit by ion beam %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2019 %P 82-93 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a6/ %G ru %F ISU_2019_19_1_a6
V. V. Ryazanov; A. S. Ledkov. Descent of nanosatellite from low Earth orbit by ion beam. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 1, pp. 82-93. http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a6/
[1] Kessler D. J., Cour-Palais B. G., “Collision frequency of artificial satellites: the creation of a debris belt”, Journal of Geophysical Research, 83:A6 (1978), 2637–2646 | DOI
[2] Veniaminov S. S., Chervonov A. M., Space debris — a threat to mankind, Space Research Institute, RAS, M., 2012, 192 pp. (in Russian)
[3] Shan M., Guo J., Gill E., “Review and comparison of active space debris capturing and removal methods”, Progress in Aerospace Sciences, 80 (2016), 18–32 | DOI
[4] Dudziak R., Tuttle S., Barraclough S., “Harpoon technology development for the active removal of space debris”, Advances in Space Research, 56:5 (2015), 509–527 | DOI
[5] Benvenuto R., Salvi S., Lavagna M., “Dynamics analysis and GNC design of flexible systems for space debris active removal”, Acta Astronautica, 110 (2015), 247–265 | DOI
[6] Larouche B. P., Zhu Z. H., “Autonomous robotic capture of non-cooperative target using visual servoing and motion predictive control”, Autonomous Robots, 37:2 (2014), 157–167 | DOI
[7] McMahan W., Chitrakaran V., Csencsits M., Dawson D., Walker I. D., Jones B. A., Pritts M., Dienno D., Grissom M., Rahn C. D., “Field trials and testing of the octarm continuum manipulator”, IEEE Intern. Conf. on Robotics and Automation (Orlando, Florida, 2006), 2336–2341
[8] Andrenucci M., Pergola P., Ruggiero A., Active removal of space debris-expanding foam application for active debris removal, ESA Final Report, Pisa, 2011, 132 pp. (accessed 21.05.2018) https://www.esa.int/gsp/ACT/doc/ARI/ARI
[9] Phipps C. R., “A laser-optical system to re-enter or lower low earth orbit space debris”, Acta Astronautica, 93 (2014), 418–429 | DOI
[10] Merino M., Ahedo E., Bombardelli C., Urrutxua H., Pelaez J., “Ion Beam Shepherd Satellite for Space Debris Removal”, Progress in Propulsion Physics, 4 (2013), 789–802 | DOI
[11] Schaub H., Parker G. G., King L. B., “Challenges and prospects of Coulomb spacecraft formation control”, Journal of Astronautical Sciences, 52:1 (2004), 169–193 | MR
[12] Aslanov V. S., “Exact solutions and adiabatic invariants for equations of satellite attitude motion under Coulomb torque”, Nonlinear Dynamics, 90:4 (2017), 2545–2556 | DOI | MR
[13] Cichocki F., Merino M., Ahedo E., “Modeling and simulation of EP plasma plume expansion into vacuum”, 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (Cleveland, OH, 2014), 5008–5024 | DOI
[14] Bombardelli C., Merino M., Ahedo E., Pelaez J., Urrutxua H., Iturri-Torreay A., Herrera-Montojoy J., Ariadna call for ideas: Active removal of space debris ion beam shepherd for contactless debris removal, ESA Final Report, Madrid, 2011, 90 pp. (accessed 21.05.2018) https://www.esa.int/gsp/ACT/doc/ARI/ARI
[15] Zuiani F., Vasile M., “Preliminary design of debris removal missions by means of simplified models for low-thrust, many-revolution transfers”, Journal of Aerospace Engineering, 2012 (2012), 836250, 22 pp. | DOI
[16] Cichocki F., Merino M., Ahedo E., Smirnova M., Mingo A., Dobkevicius M., “Electric Propulsion Subsystem Optimization for “Ion Beam Shepherd” missions”, Journal of Propulsion and Power, 33:2 (2016), 370–379 | DOI
[17] Alpatov A., Cichocki F., Fokov A., Khoroshylov S., Merino M., Zakrzhevskii A., “Determination of the force transmitted by an ion thruster plasma plume to an orbital object”, Acta Astronautica, 119 (2016), 241–251 | DOI
[18] Aslanov V. S., Ledkov A. S., “Attitude motion of cylindrical space debris during its removal by ion beam”, Mathematical Problems in Engineering, 2017 (2017), 1986374, 7 pp. | DOI
[19] Aslanov V. S., Ledkov A. S., “Tether-assisted re-entry capsule deorbiting from an elliptical orbit”, Acta Astronautica, 130 (2017), 180–186 | DOI
[20] Lipnickij Ju. M., Krasil'nikov A. V., Pokrovskij A. N., Shmanenkov V. N., Unsteady aerodynamics of ballistic flight, Fizmatlit, M., 2003, 176 pp. (in Russian)
[21] Andreevskij V. V., The dynamics of descent of space vehicles to Earth, Mashinostroenie, M., 1970, 235 pp. (in Russian)