Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2019_19_1_a1, author = {S. A. Aldashev}, title = {Nonlocal boundary-value problems in the cylindrical domain for the multidimensional {Laplace} equation}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {16--23}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a1/} }
TY - JOUR AU - S. A. Aldashev TI - Nonlocal boundary-value problems in the cylindrical domain for the multidimensional Laplace equation JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2019 SP - 16 EP - 23 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a1/ LA - ru ID - ISU_2019_19_1_a1 ER -
%0 Journal Article %A S. A. Aldashev %T Nonlocal boundary-value problems in the cylindrical domain for the multidimensional Laplace equation %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2019 %P 16-23 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a1/ %G ru %F ISU_2019_19_1_a1
S. A. Aldashev. Nonlocal boundary-value problems in the cylindrical domain for the multidimensional Laplace equation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 1, pp. 16-23. http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a1/
[1] Aldashev S. A., “The correctness of the Dirichlet problem in cylindrical domain for the multidimensional Laplace equation”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 12:3 (2012), 3–7 (in Russian) | Zbl
[2] Aldashev S. A., “Correctness of Poincare's problem in a cylindrical region for Laplace's multi-measured equation”, News of the National Academy of Sciences of the Republic of Kazakhstan. Physical-mathematical Series, 2014, no. 3 (295), 62–67 (in Russian)
[3] Aldashev S. A., “The correctness of the Dirichlet problem in cylindrical domain for a class of multidimensional elliptic equations”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:1 (2012), 7–13 (in Russian) | Zbl
[4] Aldashev S. A., “Well-Posedness of Poincare Problem in the Cylindrical Domain for a Class of Multi-Dimensional Elliptic Equations”, Vestnik of Samara University. Natural Science Series, 2014, no. 10 (121), 17–25 (in Russian) | Zbl
[5] Aldashev S. A., “The correctness of the local boundary value problem in cylindrical domain for the multidimensional Laplace equation”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 15:4 (2015), 365–371 (in Russian) | DOI | Zbl
[6] Aldashev S. A., “The correctness of the local boundary value problem in cylindrical domain for a class of multidimensional elliptic equations”, Vestnik of Samara University. Natural Science Series, 12(123):1–2 (2016), 7–17 (in Russian) | Zbl
[7] Mikhlin S. G., Multidimensional singular integrals and Integral equations, Fizmatgiz, M., 1962, 254 pp. (in Russian)
[8] Kamke E., Handbook of Ordinary Differential Equations, Nauka, M., 1965, 703 pp. (in Russian)
[9] Bateman G., Erdei A., Higher transcendental functions, v. 2, Nauka, M., 1974, 295 pp. (in Russian) | MR
[10] Tikhonov A. N., Samarskii A. A., Equations of mathematical physics, Nauka, M., 1966, 724 pp. (in Russian) | MR