Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2019_19_1_a0, author = {G. G. Akniev}, title = {Approximation of continuous $2\pi$-periodic piecewise smooth functions by discrete {Fourier} sums}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {4--15}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a0/} }
TY - JOUR AU - G. G. Akniev TI - Approximation of continuous $2\pi$-periodic piecewise smooth functions by discrete Fourier sums JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2019 SP - 4 EP - 15 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a0/ LA - en ID - ISU_2019_19_1_a0 ER -
%0 Journal Article %A G. G. Akniev %T Approximation of continuous $2\pi$-periodic piecewise smooth functions by discrete Fourier sums %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2019 %P 4-15 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a0/ %G en %F ISU_2019_19_1_a0
G. G. Akniev. Approximation of continuous $2\pi$-periodic piecewise smooth functions by discrete Fourier sums. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 1, pp. 4-15. http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a0/
[1] Bernshtein S. N., “On trigonometric interpolation by the method of least squares”, Dokl. Akad. Nauk USSR, 4 (1934), 1–5 (in Russian)
[2] Erdös P., “Some theorems and remarks on interpolation”, Acta Sci. Math. (Szeged), 12 (1950), 11–17 | MR | Zbl
[3] Kalashnikov M. D., “On polynomials of best (quadratic) approximation on a given system of points”, Dokl. Akad. Nauk USSR, 105 (1955), 634–636 (in Russian) | MR
[4] Krilov V. I., “Convergence of algebraic interpolation with respect to the roots of a Chebyshev polynomial for absolutely continuous functions and functions with bounded variation”, Dokl. Akad. Nauk USSR, 107 (1956), 362–365 (in Russian) | MR
[5] Marcinkiewicz J., “Quelques remarques sur l'interpolation”, Acta Sci. Math. (Szeged), 8 (1936), 127–130 (in French)
[6] Marcinkiewicz J., “Sur la divergence des polynômes d'interpolation”, Acta Sci. Math. (Szeged), 8 (1936), 131–135 (in French)
[7] Natanson I. P., “On the Convergence of Trigonometrical Interpolation at Equi-Distant Knots”, Annals of Mathematics, Second Ser., 45:3 (1944), 457–471 | DOI | MR | Zbl
[8] Nikolski S. M., “Sur certaines methodes d'approximation au moyen de sommes trigonometriques”, Izv. Akad. Nauk SSSR, Ser. Mat., 4:4 (1940), 509–520 (in Russian) | MR
[9] Turetskiy A. H., Interpolation theory in exercises, Vissheyshaya Shkola Publ., Minsk, 1968, 320 pp. (in Russian)
[10] Zygmund A., Trigonometric Series, v. 1, Cambridge Univ. Press, Cambridge, 1959, 747 pp. | MR | Zbl
[11] Akniyev G. G., “Discrete least squares approximation of piecewise-linear functions by trigonometric polynomials”, Issues Anal., 6(24):2 (2017), 3–24 | DOI | MR | Zbl
[12] Sharapudinov I. I., “On the best approximation and polynomials of the least quadratic deviation”, Anal. Math., 9:3 (1983), 223–234 | DOI | MR | Zbl
[13] Sharapudinov I. I., “Overlapping transformations for approximation of continuous functions by means of repeated mean Valle Poussin”, Daghestan Electronic Mathematical Reports, 2017, no. 8, 70–92 | DOI | MR
[14] Courant R., Differential and Integral Calculus, v. 1, Wiley-Interscience, New Jersey, 1988, 704 pp. | MR