Approximation of continuous $2\pi$-periodic piecewise smooth functions by discrete Fourier sums
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 1, pp. 4-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $N$ be a natural number greater than $1$. Select $N$ uniformly distributed points $t_k = 2\pi k / N + u$ $(0 \leq k \leq N - 1)$, and denote by $L_{n,N}(f)=L_{n,N}(f,x)$ $(1\leq n\leq N/2)$ the trigonometric polynomial of order $n$ possessing the least quadratic deviation from $f$ with respect to the system $\{t_k\}_{k=0}^{N-1}$. Select $m+1$ points $-\pi=a_{0}$, where $m\geq 2$, and denote $\Omega = \left\{a_i\right\}_{i=0}^{m}$. Denote by $C_{\Omega}^{r}$ a class of $2\pi$-periodic continuous functions $f$, where $f$ is $r$-times differentiable on each segment $\Delta_{i}=[a_{i},a_{i+1}]$ and $f^{(r)}$ is absolutely continuous on $\Delta_{i}$. In the present article we consider the problem of approximation of functions $f\in C_{\Omega}^{2}$ by the polynomials $L_{n,N}(f,x)$. We show that instead of the estimate $\left|f(x)-L_{n,N}(f,x)\right| \leq c\ln n/n$, which follows from the well-known Lebesgue inequality, we found an exact order estimate $\left|f(x)-L_{n,N}(f,x)\right| \leq c/n$ ($x \in \mathbb{R}$) which is uniform with respect to $n$ ($1 \leq n \leq N/2$). Moreover, we found a local estimate $\left|f(x)-L_{n,N}(f,x)\right| \leq c(\varepsilon)/n^2$ ($\left|x - a_i\right| \geq \varepsilon$) which is also uniform with respect to $n$ ($1 \leq n \leq N/2$). The proofs of these estimations are based on comparing of approximating properties of discrete and continuous finite Fourier series.
@article{ISU_2019_19_1_a0,
     author = {G. G. Akniev},
     title = {Approximation of continuous $2\pi$-periodic piecewise smooth functions by discrete {Fourier} sums},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {4--15},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a0/}
}
TY  - JOUR
AU  - G. G. Akniev
TI  - Approximation of continuous $2\pi$-periodic piecewise smooth functions by discrete Fourier sums
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2019
SP  - 4
EP  - 15
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a0/
LA  - en
ID  - ISU_2019_19_1_a0
ER  - 
%0 Journal Article
%A G. G. Akniev
%T Approximation of continuous $2\pi$-periodic piecewise smooth functions by discrete Fourier sums
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2019
%P 4-15
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a0/
%G en
%F ISU_2019_19_1_a0
G. G. Akniev. Approximation of continuous $2\pi$-periodic piecewise smooth functions by discrete Fourier sums. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 1, pp. 4-15. http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a0/

[1] Bernshtein S. N., “On trigonometric interpolation by the method of least squares”, Dokl. Akad. Nauk USSR, 4 (1934), 1–5 (in Russian)

[2] Erdös P., “Some theorems and remarks on interpolation”, Acta Sci. Math. (Szeged), 12 (1950), 11–17 | MR | Zbl

[3] Kalashnikov M. D., “On polynomials of best (quadratic) approximation on a given system of points”, Dokl. Akad. Nauk USSR, 105 (1955), 634–636 (in Russian) | MR

[4] Krilov V. I., “Convergence of algebraic interpolation with respect to the roots of a Chebyshev polynomial for absolutely continuous functions and functions with bounded variation”, Dokl. Akad. Nauk USSR, 107 (1956), 362–365 (in Russian) | MR

[5] Marcinkiewicz J., “Quelques remarques sur l'interpolation”, Acta Sci. Math. (Szeged), 8 (1936), 127–130 (in French)

[6] Marcinkiewicz J., “Sur la divergence des polynômes d'interpolation”, Acta Sci. Math. (Szeged), 8 (1936), 131–135 (in French)

[7] Natanson I. P., “On the Convergence of Trigonometrical Interpolation at Equi-Distant Knots”, Annals of Mathematics, Second Ser., 45:3 (1944), 457–471 | DOI | MR | Zbl

[8] Nikolski S. M., “Sur certaines methodes d'approximation au moyen de sommes trigonometriques”, Izv. Akad. Nauk SSSR, Ser. Mat., 4:4 (1940), 509–520 (in Russian) | MR

[9] Turetskiy A. H., Interpolation theory in exercises, Vissheyshaya Shkola Publ., Minsk, 1968, 320 pp. (in Russian)

[10] Zygmund A., Trigonometric Series, v. 1, Cambridge Univ. Press, Cambridge, 1959, 747 pp. | MR | Zbl

[11] Akniyev G. G., “Discrete least squares approximation of piecewise-linear functions by trigonometric polynomials”, Issues Anal., 6(24):2 (2017), 3–24 | DOI | MR | Zbl

[12] Sharapudinov I. I., “On the best approximation and polynomials of the least quadratic deviation”, Anal. Math., 9:3 (1983), 223–234 | DOI | MR | Zbl

[13] Sharapudinov I. I., “Overlapping transformations for approximation of continuous functions by means of repeated mean Valle Poussin”, Daghestan Electronic Mathematical Reports, 2017, no. 8, 70–92 | DOI | MR

[14] Courant R., Differential and Integral Calculus, v. 1, Wiley-Interscience, New Jersey, 1988, 704 pp. | MR