Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2019_19_1_a0, author = {G. G. Akniev}, title = {Approximation of continuous $2\pi$-periodic piecewise smooth functions by discrete {Fourier} sums}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {4--15}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a0/} }
TY - JOUR AU - G. G. Akniev TI - Approximation of continuous $2\pi$-periodic piecewise smooth functions by discrete Fourier sums JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2019 SP - 4 EP - 15 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a0/ LA - en ID - ISU_2019_19_1_a0 ER -
%0 Journal Article %A G. G. Akniev %T Approximation of continuous $2\pi$-periodic piecewise smooth functions by discrete Fourier sums %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2019 %P 4-15 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a0/ %G en %F ISU_2019_19_1_a0
G. G. Akniev. Approximation of continuous $2\pi$-periodic piecewise smooth functions by discrete Fourier sums. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 19 (2019) no. 1, pp. 4-15. http://geodesic.mathdoc.fr/item/ISU_2019_19_1_a0/