Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2018_18_4_a11, author = {Tran Le Thai and D. V. Tarlakovskii}, title = {Axisymmetric problem {Lemba} for the {Cosserat} medium}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {496--506}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_4_a11/} }
TY - JOUR AU - Tran Le Thai AU - D. V. Tarlakovskii TI - Axisymmetric problem Lemba for the Cosserat medium JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2018 SP - 496 EP - 506 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2018_18_4_a11/ LA - ru ID - ISU_2018_18_4_a11 ER -
%0 Journal Article %A Tran Le Thai %A D. V. Tarlakovskii %T Axisymmetric problem Lemba for the Cosserat medium %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2018 %P 496-506 %V 18 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2018_18_4_a11/ %G ru %F ISU_2018_18_4_a11
Tran Le Thai; D. V. Tarlakovskii. Axisymmetric problem Lemba for the Cosserat medium. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 4, pp. 496-506. http://geodesic.mathdoc.fr/item/ISU_2018_18_4_a11/
[1] Cosserat E., Cosserat F., Theorie des corps deformables, Librairie Scientifique A. Hermann et Fils, Paris, 1909, 226 pp. (in French)
[2] Erofeev V. I., Wave Processes in Solids with Microstructure, Moscow Univ. Press, M., 1999, 328 pp. (in Russian)
[3] Kulesh M. A., Shardakov I. N., “Construction and analysis of some exact analytic solutions of two-dimensional elastic problems within the Cosserat continuum”, Bulletin of Perm State Technical University. Mathematical modeling of systems and processes, 2001, no. 9, 187–201 (in Russian)
[4] Lai Thanh Tuan, Tarlakovsky D. V., “Propagation of non-stationary kinematic perturbations from a spherical cavity in the Cosserat pseudocontinuum”, Mechanics of composite materials and structures, 17:2 (2011), 184–195 (in Russian)
[5] Lai Thanh Tuan, Tarlakovsky D. V., “Propagation of nonstationary axisymmetric perturbations from the surface of a sphere filled with a Cousser pseudoelastic medium”, Online journal “Trudy MAI”, 2012, no. 53 (in Russian) (accessed 19 April 2012)
[6] Lai Thanh Tuan, Tarlakovsky D. V., “Diffraction of waves by a spherical cavity in the Cosserat pseudo-continuum”, Radioelectron., Nanosist., Inf. Tekhnol., 5:1 (2013), 119–125 (in Russian)
[7] Palmov V. A., “Basic equations of the theory of asymmetric elasticity”, Applied Mathematics and Mechanics, 28:6 (1964), 1117–1120 (in Russian) | MR | Zbl
[8] Belonosov S. M., Moment theory of elasticity: (Statics), Dal'nauka Publ., Vladivostok, 1993, 148 pp. (in Russian)
[9] Bytev V. O., Slezko I. V., “Solution of asymmetric elasticity problems”, Collection of scientific papers, Mathematical and Informational Modeling, 10, Vector Beech, Tyumen, 2008, 27–32 (in Russian)
[10] Atoyan A. A., Sarkisyan S. O., “Dynamic theory of micropolar elastic thin plates”, Ekol. vestn. nauch. tsentrov CHES, 2004, no. 1, 18–29 (in Russian)
[11] Hirdeshwar S. Saxena, Ranjit S. Dhaliwal, “Eigenvalue approach to axially-symmetric coupled micropolar thermoelasticity”, Bull. Pol. Acad. Sci. Techn. Sci., 38:1 (1990), 7–18 | MR | Zbl
[12] Suvorov E. M., Tarlakovskii D. V., Fedotenkov G. V., “The plane problem of the impact of a rigid body on a half-space modelled by a Cosserat medium”, J. Appl. Math. Mech., 76:5 (2012), 511–518 | DOI | MR | Zbl
[13] Tran Le Thai, Tarlakovskii D. V., “Nonstationary axisymmetric motion of an elastic momentum semi-space under non-stationary normal surface movements”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159, no. 2, 2017, 231–245 (in Russian)
[14] Novatsky V., Theory of Elasticity, Mir, M., 1975, 872 pp. (in Russian)
[15] Gorshkov A. G., Medvedskii A. L., Rabinskii L. N., Tarlakovskii D. V., Waves in Continuous Media, Fizmatlit, M., 2004, 472 pp. (in Russian)
[16] Slepian L. I., Non-stationary elastic waves, Sudostroenie Publ., L., 1972, 351 pp. (in Russian)
[17] Poruchikov V. B., Methods of the Dynamic Theory of Elasticity, Nauka, M., 1986, 328 pp. (in Russian)
[18] Gorshkov A. G, Tarlakovskii D. V., Dynamic contact problems with moving boundaries, Fizmatlit, M., 1995, 352 pp. (in Russian) | MR