Some properties of $0/1$-simplices
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 3, pp. 305-315.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $n\in {\mathbb N}$, and let $Q_n=[0,1]^n$. For a nondegenerate simplex $S\subset {\mathbb R}^n$, by $\sigma S$ we mean the homothetic copy of $S$ with center of homothety in the center of gravity of $S$ and ratio of homothety $\sigma$. Put $\xi(S)=\min\{\sigma\geq 1: Q_n\subset \sigma S\}$, $\xi_n=\min\{\xi(S): S\subset Q_n\}$. By $P$ we denote the interpolation projector from $C(Q_n)$ onto the space of linear functions of $n$ variables with the nodes in the vertices of a simplex $S\subset Q_n$. Let $\|P\|$ be the norm of $P$ as an operator from $C(Q_n)$ to $C(Q_n)$, $\theta_n=\min\|P\|$. By $\xi^\prime_n$ and $\theta^\prime_n$ we denote the values analogous to $\xi_n$ and $\theta_n$, with the additional condition that corresponding simplices are $0/1$-polytopes, i. e., their vertices coincide with vertices of $Q_n$. In the present paper, we systematize general estimates of the numbers $\xi^\prime_n$, $\theta^\prime_n$ and also give their new estimates and precise values for some $n$. We prove that $\xi^\prime_n\asymp n$, $\theta^\prime_n\asymp \sqrt{n}$. Let one vertex of $0/1$-simplex $S^*$ be an arbitrary vertex $v$ of $Q_n$ and the other $n$ vertices are close to the vertex of the cube opposite to $v$. For $2\leq n\leq 5$, each simplex extremal in the sense of $\xi^\prime_n$ coincides with $S^*$. The minimal $n$ such that $\xi(S^*)>\xi^\prime_n$ is equal to $6$. Denote by $P^*$ the interpolation projector with the nodes in the vertices of $S^*$. The minimal $n$ such that $\|P^*\|>\theta^\prime_n$ is equal to $5$.
@article{ISU_2018_18_3_a5,
     author = {M. V. Nevskii and A. Yu. Ukhalov},
     title = {Some properties of $0/1$-simplices},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {305--315},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a5/}
}
TY  - JOUR
AU  - M. V. Nevskii
AU  - A. Yu. Ukhalov
TI  - Some properties of $0/1$-simplices
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2018
SP  - 305
EP  - 315
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a5/
LA  - ru
ID  - ISU_2018_18_3_a5
ER  - 
%0 Journal Article
%A M. V. Nevskii
%A A. Yu. Ukhalov
%T Some properties of $0/1$-simplices
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2018
%P 305-315
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a5/
%G ru
%F ISU_2018_18_3_a5
M. V. Nevskii; A. Yu. Ukhalov. Some properties of $0/1$-simplices. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 3, pp. 305-315. http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a5/

[1] Scott P. R., “Lattices and convex sets in space”, Quart. J. Math. Oxford (2), 36 (1985), 359–362 | DOI | MR | Zbl

[2] Scott P. R., “Properties of axial diameters”, Bull. Austral. Math. Soc., 39 (1989), 329–333 | DOI | MR | Zbl

[3] Nevskii M. V., “On a property of $n$-dimensional simplices”, Math. Notes, 87:4 (2010), 543–555 | DOI | MR | Zbl

[4] Nevskii M., “Properties of axial diameters of a simplex”, Discrete Comput. Geom., 46:2 (2011), 301–312 | DOI | MR | Zbl

[5] Nevskii M. V, Geometric Estimates in Polynomial Interpolation, Yaroslavl State University, Yaroslavl, 2012, 218 pp.

[6] Hall M., Jr., Combinatorial Theory, Blaisdall publishing company, Waltham–Toronto–London, 1967 | MR | MR | Zbl

[7] Hudelson M., Klee V., Larman D., “Largest $j$-simplices in $d$-cubes: some relatives of the Hadamard maximum determinant problem”, Linear Algebra Appl., 241–243 (1996), 519–598 | DOI | MR | Zbl

[8] Nevskii M. V., “Estimates for the minimal norm of a projector related to the linear interpolation by vertices of an $n$-dimensional cube”, Modeling and Analysis of Information Systems, 10:1 (2003), 9–19

[9] Tarakanov V. E., Combinatoric Problems and $(0,1)$-Matrices, Nauka, M., 1985, 218 pp. | MR

[10] Szego G., Orthogonal Polynomials, American Mathematical Society, New York, 1959 | MR | Zbl

[11] Suetin P. K, Classic Orthogonal Polynomials, Nauka, M., 1979, 416 pp.

[12] Nevskii M. V., Ukhalov A. Yu., “On $n$-dimensional simplices satisfying inclusions $S\subset [0,1]^n\subset nS$”, Modeling and Analysis of Information Systems, 24:5 (2017), 578–595 (in Russian) | DOI | MR

[13] Nevskii M. V., Ukhalov A. Yu, “New estimates of numerical values related to a simplex”, Modeling and Analysis of Information Systems, 24:1 (2017), 94–110 (in Russian) | DOI | MR

[14] Mangano S., Mathematica cookbook, O'Reilly Media Inc., Cambridge, 2010, 832 pp.

[15] Diakonov V. P, Mathematica 5/6/7. Full Guidance, DMK Press, M., 2010, 624 pp.