Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2018_18_3_a4, author = {I. S. Mokrousov}, title = {Criterion for a generalized solution in the class $L_p$ for the wave equation to be in the class $W^l_p$}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {297--304}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a4/} }
TY - JOUR AU - I. S. Mokrousov TI - Criterion for a generalized solution in the class $L_p$ for the wave equation to be in the class $W^l_p$ JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2018 SP - 297 EP - 304 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a4/ LA - ru ID - ISU_2018_18_3_a4 ER -
%0 Journal Article %A I. S. Mokrousov %T Criterion for a generalized solution in the class $L_p$ for the wave equation to be in the class $W^l_p$ %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2018 %P 297-304 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a4/ %G ru %F ISU_2018_18_3_a4
I. S. Mokrousov. Criterion for a generalized solution in the class $L_p$ for the wave equation to be in the class $W^l_p$. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 3, pp. 297-304. http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a4/