Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2018_18_3_a4, author = {I. S. Mokrousov}, title = {Criterion for a generalized solution in the class $L_p$ for the wave equation to be in the class $W^l_p$}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {297--304}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a4/} }
TY - JOUR AU - I. S. Mokrousov TI - Criterion for a generalized solution in the class $L_p$ for the wave equation to be in the class $W^l_p$ JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2018 SP - 297 EP - 304 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a4/ LA - ru ID - ISU_2018_18_3_a4 ER -
%0 Journal Article %A I. S. Mokrousov %T Criterion for a generalized solution in the class $L_p$ for the wave equation to be in the class $W^l_p$ %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2018 %P 297-304 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a4/ %G ru %F ISU_2018_18_3_a4
I. S. Mokrousov. Criterion for a generalized solution in the class $L_p$ for the wave equation to be in the class $W^l_p$. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 3, pp. 297-304. http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a4/
[1] Il'in V. A., “The solvability of mixed problems for hyperbolic and parabolic equations”, Russ. Math. Surv., 15:2 (1960), 85–142 | DOI | MR | Zbl
[2] Il'in V. A., Kuleshov A. A., “On some properties of generalized solutions of the wave equation in the classes $L_p$ and $W_p^1$ for $p \geq 1$”, Differential equations, 48:11 (2012), 1470–1476 | DOI | MR | Zbl
[3] Moiseev E. I., Kholomeeva A. A, “Solvability of mixed problems for the string oscillation equation in the space $W^1_p$, with $p\geqslant 1$”, Doklady Math., 84:3 (2011), 818–820 | DOI | MR | Zbl
[4] Il'in V. A., Kuleshov A. A., “Equivalence of two definitions of a generalized $L_p$ solution to the initial-boundary value problem for the wave equation”, Proc. Steklov Inst. Math., 284:1 (2014), 155–160 | DOI | DOI | MR | Zbl
[5] Il'in V. A., Kuleshov A. A, “Necessary and sufficient conditions for a generalized solution to the initial-boundary value problem for the wave equation to belong to $W_p^1$ with $p \geq 1$”, Proc. Steklov Inst. Math., 283:1 (2013), 110–115 | DOI | MR | Zbl
[6] Moiseev E. I, Tihomirov V. V., “On a wave process with finite energy for a given boundary regime at one end and elastic fastening at the other end”, Nonlinear dinamics and control, 5, Physmathlit, M., 2007, 141–148
[7] Khromov A. P., Burlutskaya M. Sh., “Classical solution by the Fourier method of mixed problems with minimum requirements on the initial data”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 14:2 (2014), 171–198 | Zbl
[8] Khromov A. P, “About the classical solution of the mixed problem for the wave equation.”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 15:1 (2015), 56–66 (in Russian) | DOI | Zbl
[9] Il'in V. A., Kuleshov A. A., “Criterion for a generalized solution in the class $L_p$ for the wave equation to be in the class $W^1_p$”, Doklady Math., 86:3 (2012), 740–742 | DOI | MR | Zbl
[10] Il'in V. A., Kuleshov A. A., “Generalized solutions of the wave equation in the classes $L_p$ and $W_p^1$ with $p \geqslant 1$”, Doklady Math., 86:2 (2012), 657–660 | DOI | MR | Zbl
[11] Tikhonov A. N., Samarskii A. A, Equations of mathematical physics, Nauka, M., 1972, 736 pp. | MR
[12] Vladimirov V. S, Equations of mathematical physics, Nauka, M., 512 pp. | MR
[13] Sadovnichii V. A., Operator theory, Drofa, M., 2004, 381 pp.
[14] Naimark M. A, Linear differential operators, Nauka, M., 1969, 528 pp.
[15] Steklov V. A., Fundamental problems in mathematical physics, Nauka, M., 1983, 432 pp. (in Russian)
[16] Ladyzhenskaya O. A., A mixed problem for the hyperbolic equation, Gostehizdat, M., 1953, 282 pp. | MR
[17] Il'in V. A., Selected works, v. 1, MAKS Press, M., 2008, 727 pp.