An asymptotic relation for conformal radii of two nonoverlapping domains
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 3, pp. 274-283.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a family of continuously varying closed Jordan curves given by a polar equation, such that the interiors of the curves form an increasing or decreasing chain of domains. Such chains can be described by the Löwner – Kufarev differential equation. We deduce an integral representation of a driving function in the equation. Using this representation we obtain an asymptotic formula, which establishes a connection between conformal radii of bounded and unbounded components of the complement of the Jordan curve when the bounded component is close to the unit disk.
@article{ISU_2018_18_3_a2,
     author = {A. V. Zherdev},
     title = {An asymptotic relation for conformal radii of two nonoverlapping domains},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {274--283},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a2/}
}
TY  - JOUR
AU  - A. V. Zherdev
TI  - An asymptotic relation for conformal radii of two nonoverlapping domains
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2018
SP  - 274
EP  - 283
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a2/
LA  - en
ID  - ISU_2018_18_3_a2
ER  - 
%0 Journal Article
%A A. V. Zherdev
%T An asymptotic relation for conformal radii of two nonoverlapping domains
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2018
%P 274-283
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a2/
%G en
%F ISU_2018_18_3_a2
A. V. Zherdev. An asymptotic relation for conformal radii of two nonoverlapping domains. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 3, pp. 274-283. http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a2/

[1] Lebedev N. A., The area principle in the theory of univalent functions, Nauka, M., 1975, 336 pp. (in Russian) | MR | Zbl

[2] Hamilton D. H., Conformal welding. Handbook of complex analysis: geometric function theory, ed. R. Kühnau, North Holland, Amsterdam, 2002, 548 pp. | MR

[3] Grong E., Gumenyuk P., Vasil'ev A., “Matching univalent functions and conformal welding”, Ann. Acad. Sci. Fenn. Math., 34 (2009), 303–314 | MR | Zbl

[4] Bishop C. J., “Conformal welding and Koebe's theorem”, Ann. Math., 166 (2007), 613–656 | DOI | MR | Zbl

[5] Prokhorov D. V., “Conformal welding for domains close to a disk”, Anal. Math. Phys., 1 (2011), 101–114 | DOI | MR | Zbl

[6] Prokhorov D. V., “Asymptotic conformal welding via Löwner–Kufarev evolution”, Comput. Methods Funct. Theory, 13:1 (2013), 37–46 | DOI | MR | Zbl

[7] Marshall D. E., “Conformal Welding for Finitely Connected Regions”, Comput. Methods Funct. Theory, 11 (2012), 655–669 | DOI | MR

[8] Löwner K., “Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I”, Math. Ann., 89 (1923), 103–121 | DOI | MR | Zbl

[9] Kufarev P. P., “On one-parametric families of analytic functions”, Mat. Sbornik, 13(55):1 (1943), 87–118 (in Russian) | MR

[10] Pommerenke Ch., “Über die Subordination analytischer Funktionen”, J. Reine Angew. Math., 218 (1965), 159–173 | DOI | MR | Zbl

[11] Pommerenke Ch., Univalent functions, Vandenhoeck and Ruprecht, Gottingen, 1975, 376 pp. | MR | Zbl

[12] Siryk G. V., “On a conformal mapping of near domains”, Uspekhi Mat. Nauk, 11:5(71) (1956), 57–60 (in Russian) | MR | Zbl

[13] Lavrentyev M. A., Shabat B. V., Methods of Function Theory of a Complex Variable, Nauka, M., 1965, 716 pp. (in Russian) | MR

[14] Pommerenke Ch., Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992, 300 pp. | DOI | MR | Zbl