An asymptotic relation for conformal radii of two nonoverlapping domains
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 3, pp. 274-283

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a family of continuously varying closed Jordan curves given by a polar equation, such that the interiors of the curves form an increasing or decreasing chain of domains. Such chains can be described by the Löwner – Kufarev differential equation. We deduce an integral representation of a driving function in the equation. Using this representation we obtain an asymptotic formula, which establishes a connection between conformal radii of bounded and unbounded components of the complement of the Jordan curve when the bounded component is close to the unit disk.
@article{ISU_2018_18_3_a2,
     author = {A. V. Zherdev},
     title = {An asymptotic relation for conformal radii of two nonoverlapping domains},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {274--283},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a2/}
}
TY  - JOUR
AU  - A. V. Zherdev
TI  - An asymptotic relation for conformal radii of two nonoverlapping domains
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2018
SP  - 274
EP  - 283
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a2/
LA  - en
ID  - ISU_2018_18_3_a2
ER  - 
%0 Journal Article
%A A. V. Zherdev
%T An asymptotic relation for conformal radii of two nonoverlapping domains
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2018
%P 274-283
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a2/
%G en
%F ISU_2018_18_3_a2
A. V. Zherdev. An asymptotic relation for conformal radii of two nonoverlapping domains. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 3, pp. 274-283. http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a2/