Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2018_18_3_a1, author = {S. V. Galaev}, title = {Classification of prolonged bi-metric structures on distributions of non-zero curvature of {sub-Riemannian} manifolds}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {263--273}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a1/} }
TY - JOUR AU - S. V. Galaev TI - Classification of prolonged bi-metric structures on distributions of non-zero curvature of sub-Riemannian manifolds JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2018 SP - 263 EP - 273 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a1/ LA - ru ID - ISU_2018_18_3_a1 ER -
%0 Journal Article %A S. V. Galaev %T Classification of prolonged bi-metric structures on distributions of non-zero curvature of sub-Riemannian manifolds %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2018 %P 263-273 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a1/ %G ru %F ISU_2018_18_3_a1
S. V. Galaev. Classification of prolonged bi-metric structures on distributions of non-zero curvature of sub-Riemannian manifolds. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 3, pp. 263-273. http://geodesic.mathdoc.fr/item/ISU_2018_18_3_a1/
[1] Ganchev G., Mihova V., Gribachev K., “Almost contact manifolds with $B$-metric”, Math. Balkanica (N. S.), 7:3–4 (1993), 261–276 | MR | Zbl
[2] Manev M., “Tangent bundles with Sasaki metric and almost hypercomplex pseudo-Hermitian structure”, Topics in Almost Hermitian Geometry and Related Fields, 2005, 170–185 | DOI | MR | Zbl
[3] Manev M., “Tangent bundles with complete lift of the base metric and almost hypercomplex Hermitian-Norden structure”, Compt. rend. Acad. bulg. Sci., 67:3 (2014), 313–322, arXiv: 1309.0977v1 [math.DG] | MR | Zbl
[4] Bukusheva A. V, “The geometry of the contact metric spaces $\varphi$-connection”, Belgorod State University Scientific Bulletin. Mathematics Physics, 17(214):40 (2015), 20–24
[5] Bukusheva A. V., Galaev S. V, “Connections on distributions and geodesic sprays”, Russian Math. (Iz. VUZ), 57:4 (2013), 7–13 | DOI | MR | Zbl
[6] Bukusheva A. V., Galaev S. V., “Almost contact metric structures defined by connection over distribution with admissible Finslerian metric”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 12:3 (2012), 17–22 | Zbl
[7] Galaev S. V., “On classification of continuous B-metric structures on sub-Riemannian manifolds with zero Schouten tensor”, Vestnik Bashkirskogo universiteta, 22:4 (2017), 936–939
[8] Bukusheva A. V., Galaev S. V., “Almost contact metric structures defined by connection over distribution”, Bulletin of the Transilvania University of Brasov. Ser. III: Mathematics, Informatics, Physics, 4 (53):2 (2011), 13–22 | MR | Zbl
[9] Galaev S. V., “Smooth distributions with admissible hypercomplex pseudo-hermitian structure”, Vestnik Bashkirskogo Universiteta, 21:3 (2016), 551–555 | MR
[10] Bukusheva A. V., “Foliation on distribution with Finslerian metric”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 14:3 (2014), 247–251 | Zbl
[11] Galaev S. V., “On Distributions with Special Quasi-Sasakian Structure”, Science Journal of VolSU. Mathematics. Physics (in Russian) | DOI | MR
[12] Vershik A. M., Gershkovich V. Ya., “Nonholonomic dynamical systems. Geometry of distributions and variational problems”, Dynamical systems–7, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 16, VINITI, M., 1987, 5–85
[13] Vershik A. M., Faddeev L. D., “Lagranzheva mekhanika v invariantnom izlozhenii”, Problemy teoreticheskoi fiziki, v. 2, Teoriya yadra. Funktsionalnye metody v kvantovoi teorii polya i statisticheskoi fizike. Matematicheskaya fizika, Izd-vo LGU, L., 1975, 129–141; Vershik A. M., Faddeev L. D., “Lagrangian mechanics in invariant formulation”, Selecta Math. Soviet, 1:4 (1981), 339–350; Reprinted in: L. D. Faddeev, 40 years in mathematical physics
[14] Gladush V. D., “Five-Dimensional General Relativity and Kaluza–Klein Theory”, Theoret. and Math. Phys., 136:3 (2003), 1312–1324 | DOI | DOI | MR | Zbl
[15] Manin Yu. I., Calibration fields and complex geometry, Nauka, M., 1984, 336 pp.
[16] Sasaki S., “On the differential geometry of tangent bundles of Riemannian manifolds II”, Tohoku Math. J., 14 (1962), 146–155 | DOI | MR | Zbl
[17] Yano K., Ishihara S., Tangent and cotangent bundles: differential geometry, Marcel Dekker, Inc., N.Y., 1973, 423 pp. | MR | Zbl
[18] Vagner V. V., “The geometry of an $(n-1)$-dimensional non-holonomic manifold in an $n$-dimensional space”, Proceedings of the seminar on vector and tensor analysis, 5, Moscow Univ. Press, M., 1941, 173–255 | MR
[19] Blair D. E., Contact manifolds in Riemannian geometry, Springer-Verlag, Berlin–N. Y., 1976, 146 pp. | MR | Zbl