Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2018_18_2_a6, author = {M. A. Barulina}, title = {Application of generalized differential quadrature method to two-dimensional problems of mechanics}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {206--216}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a6/} }
TY - JOUR AU - M. A. Barulina TI - Application of generalized differential quadrature method to two-dimensional problems of mechanics JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2018 SP - 206 EP - 216 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a6/ LA - ru ID - ISU_2018_18_2_a6 ER -
%0 Journal Article %A M. A. Barulina %T Application of generalized differential quadrature method to two-dimensional problems of mechanics %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2018 %P 206-216 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a6/ %G ru %F ISU_2018_18_2_a6
M. A. Barulina. Application of generalized differential quadrature method to two-dimensional problems of mechanics. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 2, pp. 206-216. http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a6/
[1] Bellman R. E., Kashef B. G., Casti J., “Differential quadrature: A technique for the rapid solution of nonlinear partial differential equations”, J. Comput. Phys., 10:1 (1972), 40–52 | DOI | MR
[2] Verzhbitskii V. M., Numerical Methods (Mathematical Analysis and Ordinary Differential Equations), Direkt-Media, M., 2013, 400 pp.
[3] Shu C., Differential Quadrature and Its Application in Engineering, Springer-Verlag, L., 2000, 340 pp. | DOI | MR
[4] Wu T. Y., Liu G. R., “Application of the generalized differential quadrature rule to eighth-order differential equations”, Communications in Numerical Methods in Engineering, 17:5 (2001), 355–364 | DOI | MR
[5] Golfam B., Rezaie F., “A new generalized approach for implementing any homogeneous and non-homogeneous boundary conditions in the generalized differential quadrature analysis of beams”, Scientia Iranica, 20:4 (2013), 1114–1123
[6] Mansell G., Merryfield W., Shizgal B., Weinert U., “A comparison of differential quadrature methods for the solution of partial-differential equations”, Computer Methods in Applied Mechanics and Engineering, 104:3 (1993), 295–316 | DOI
[7] Love A. E. H., A Treatise on the Mathematical Theory of Elasticity, Cambridge Univ. Press, 2013, 662 pp. | MR
[8] Parlett B. N., The Symmetric Eigenvalue Problem, Classics in Applied Mathematics, SIAM, Philadelphia, 1987, 416 pp. | MR | MR
[9] Wilkinson J. H., Reinsch C., Handbook for Automatic Computation, v. II, Linear Algebra, Springer-Verlag, Berlin–Heidelberg, 1971, 441 pp. | DOI | MR
[10] Leissa A. W., “The free vibration of rectangular plates”, J. Sound and Vibration, 31:3 (1973), 257–293 | DOI