On binary B-splines of second order
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 2, pp. 172-182

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical B-spline is defined recursively as the convolution $B_{n+1}=B_n*B_0$, where $B_0$ is the characteristic function of the unit interval. The classical B-spline is a refinable function and satisfies the Riesz inequality. Therefore any B-spline $B_n$ generates the Riesz multiresolution analysis (MRA). We define binary B-splines, obtained by double integration of the third Walsh function. We give an algorithm for constructing an interpolating spline of the second degree for a binary node system and find the approximation order of this interpolation process. We also prove that the system of dilations and shifts of the constructed B-spline generates an MRA $ (V_n) $ in De Boor sense. This MRA is not Riesz. But we can find the approximation order of functions from the Sobolev spaces $W_2^s, s>0$ by the subspaces $ (V_n) $.
@article{ISU_2018_18_2_a3,
     author = {S. F. Lukomskii and M. D. Mushko},
     title = {On binary {B-splines} of second order},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {172--182},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a3/}
}
TY  - JOUR
AU  - S. F. Lukomskii
AU  - M. D. Mushko
TI  - On binary B-splines of second order
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2018
SP  - 172
EP  - 182
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a3/
LA  - ru
ID  - ISU_2018_18_2_a3
ER  - 
%0 Journal Article
%A S. F. Lukomskii
%A M. D. Mushko
%T On binary B-splines of second order
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2018
%P 172-182
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a3/
%G ru
%F ISU_2018_18_2_a3
S. F. Lukomskii; M. D. Mushko. On binary B-splines of second order. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 2, pp. 172-182. http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a3/