On binary B-splines of second order
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 2, pp. 172-182.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical B-spline is defined recursively as the convolution $B_{n+1}=B_n*B_0$, where $B_0$ is the characteristic function of the unit interval. The classical B-spline is a refinable function and satisfies the Riesz inequality. Therefore any B-spline $B_n$ generates the Riesz multiresolution analysis (MRA). We define binary B-splines, obtained by double integration of the third Walsh function. We give an algorithm for constructing an interpolating spline of the second degree for a binary node system and find the approximation order of this interpolation process. We also prove that the system of dilations and shifts of the constructed B-spline generates an MRA $ (V_n) $ in De Boor sense. This MRA is not Riesz. But we can find the approximation order of functions from the Sobolev spaces $W_2^s, s>0$ by the subspaces $ (V_n) $.
@article{ISU_2018_18_2_a3,
     author = {S. F. Lukomskii and M. D. Mushko},
     title = {On binary {B-splines} of second order},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {172--182},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a3/}
}
TY  - JOUR
AU  - S. F. Lukomskii
AU  - M. D. Mushko
TI  - On binary B-splines of second order
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2018
SP  - 172
EP  - 182
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a3/
LA  - ru
ID  - ISU_2018_18_2_a3
ER  - 
%0 Journal Article
%A S. F. Lukomskii
%A M. D. Mushko
%T On binary B-splines of second order
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2018
%P 172-182
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a3/
%G ru
%F ISU_2018_18_2_a3
S. F. Lukomskii; M. D. Mushko. On binary B-splines of second order. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 2, pp. 172-182. http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a3/

[1] Curry H. B., Schoenberg I. J., “On spline distributions and their limits: the Pollya distributions”, Bull. Amer. Math. Soc., 53 (1947), Abstract 380t, 1114

[2] Schoenberg I. J., “On spline functions (with a supplement by T. N. E. Greville)”, Inequalities I, ed. O. Shisha, Academic Press, N. Y., 1967, 255–291 | MR

[3] Schoenberg I. J., “Contributions to problem of approximation of equidistant data by analytic functions”, Quart. Appl. Math., 4 (1946), 45–99 ; 112–141 | DOI | MR

[4] Alberg J. H., Nilson E. N., Walsh J. L, The theory of splines and their Applications, Academic Press, 1967, 296 pp. | MR | MR

[5] De Boor C., A practical guide to splines, Springer-Verlag, New York, 2001, 348 pp. | MR | MR

[6] Strömberg J.-O., “A modified Franklin system and higher-order spline systems on $R^n$ as unconditional bases for Hardy spaces”, Conference in Harmonic Analysis in Honor of A.Zigmund, The Wadsworth Mathematics Series, 2, eds. W. Beckner, A. P. Calderon, Springer, 1982, 475–494

[7] Battle G., “A block spin construction of ondelettes. Part 1: Lemarie functions”, Comm. Math. Phys., 110 (1987), 601–615 | DOI | MR

[8] Lemarie P.-G., Meyer Y., “Ondelettes et bases Hilbertiennes”, Rev. Math. Iber., 2:1/2 (1987), 1–18 | MR

[9] Chumachenko S., “On an analogue of the Faber–Schauder system”, Proceedings of the N. I. Lobachevsky Mathematical Center, 53, 2016, 163–164

[10] Hongkai Zhao (ed.), Mathematics in image processing, IAS/Park City Mathematics Series, 19, 2013, 245 pp. | MR

[11] De Boor C., DeVore R. A., Ron A., “Approximation from shift-invariant subspaces of $L_2(R^d)$”, Transactions of the American Mathematical Society, 341:2 (1994), 787–806 | MR

[12] De Boor C., DeVore R. A., Ron A., “On the construction of multivariante (pre) wavelets”, Constructive approximation, 9:2 (1993), 123–166 | DOI | MR

[13] Jia R. Q., Shen Z., “Multiresolution and Wavelets”, Proc. Edinb. Math. Soc., II. Ser., 37:2 (1994), 271–300 | DOI | MR

[14] Jia R. Q., Micchelli C. A., “Using the refinement equations for the construction of prewavelets II: Powers of two”, Curves and surfaces, eds. P.-J. Laurent, A. Le Mehaute, L. L. Schumaker, Elsevier Inc., 1999, 209–246 | MR

[15] Chui Ch. K, An Introduction to Wavelets, Academic Press, San Diego, CA, USA, 1992, 264 pp. | MR