Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2018_18_2_a3, author = {S. F. Lukomskii and M. D. Mushko}, title = {On binary {B-splines} of second order}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {172--182}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a3/} }
TY - JOUR AU - S. F. Lukomskii AU - M. D. Mushko TI - On binary B-splines of second order JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2018 SP - 172 EP - 182 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a3/ LA - ru ID - ISU_2018_18_2_a3 ER -
S. F. Lukomskii; M. D. Mushko. On binary B-splines of second order. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 2, pp. 172-182. http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a3/
[1] Curry H. B., Schoenberg I. J., “On spline distributions and their limits: the Pollya distributions”, Bull. Amer. Math. Soc., 53 (1947), Abstract 380t, 1114
[2] Schoenberg I. J., “On spline functions (with a supplement by T. N. E. Greville)”, Inequalities I, ed. O. Shisha, Academic Press, N. Y., 1967, 255–291 | MR
[3] Schoenberg I. J., “Contributions to problem of approximation of equidistant data by analytic functions”, Quart. Appl. Math., 4 (1946), 45–99 ; 112–141 | DOI | MR
[4] Alberg J. H., Nilson E. N., Walsh J. L, The theory of splines and their Applications, Academic Press, 1967, 296 pp. | MR | MR
[5] De Boor C., A practical guide to splines, Springer-Verlag, New York, 2001, 348 pp. | MR | MR
[6] Strömberg J.-O., “A modified Franklin system and higher-order spline systems on $R^n$ as unconditional bases for Hardy spaces”, Conference in Harmonic Analysis in Honor of A.Zigmund, The Wadsworth Mathematics Series, 2, eds. W. Beckner, A. P. Calderon, Springer, 1982, 475–494
[7] Battle G., “A block spin construction of ondelettes. Part 1: Lemarie functions”, Comm. Math. Phys., 110 (1987), 601–615 | DOI | MR
[8] Lemarie P.-G., Meyer Y., “Ondelettes et bases Hilbertiennes”, Rev. Math. Iber., 2:1/2 (1987), 1–18 | MR
[9] Chumachenko S., “On an analogue of the Faber–Schauder system”, Proceedings of the N. I. Lobachevsky Mathematical Center, 53, 2016, 163–164
[10] Hongkai Zhao (ed.), Mathematics in image processing, IAS/Park City Mathematics Series, 19, 2013, 245 pp. | MR
[11] De Boor C., DeVore R. A., Ron A., “Approximation from shift-invariant subspaces of $L_2(R^d)$”, Transactions of the American Mathematical Society, 341:2 (1994), 787–806 | MR
[12] De Boor C., DeVore R. A., Ron A., “On the construction of multivariante (pre) wavelets”, Constructive approximation, 9:2 (1993), 123–166 | DOI | MR
[13] Jia R. Q., Shen Z., “Multiresolution and Wavelets”, Proc. Edinb. Math. Soc., II. Ser., 37:2 (1994), 271–300 | DOI | MR
[14] Jia R. Q., Micchelli C. A., “Using the refinement equations for the construction of prewavelets II: Powers of two”, Curves and surfaces, eds. P.-J. Laurent, A. Le Mehaute, L. L. Schumaker, Elsevier Inc., 1999, 209–246 | MR
[15] Chui Ch. K, An Introduction to Wavelets, Academic Press, San Diego, CA, USA, 1992, 264 pp. | MR