Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2018_18_2_a2, author = {V. P. Kurdyumov and A. P. Khromov and V. A. Khalova}, title = {A mixed problem for a wave equation with a nonzero initial velocity}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {157--171}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a2/} }
TY - JOUR AU - V. P. Kurdyumov AU - A. P. Khromov AU - V. A. Khalova TI - A mixed problem for a wave equation with a nonzero initial velocity JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2018 SP - 157 EP - 171 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a2/ LA - ru ID - ISU_2018_18_2_a2 ER -
%0 Journal Article %A V. P. Kurdyumov %A A. P. Khromov %A V. A. Khalova %T A mixed problem for a wave equation with a nonzero initial velocity %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2018 %P 157-171 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a2/ %G ru %F ISU_2018_18_2_a2
V. P. Kurdyumov; A. P. Khromov; V. A. Khalova. A mixed problem for a wave equation with a nonzero initial velocity. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 2, pp. 157-171. http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a2/
[1] Burlutskaya M. Sh., Khromov A. P., “Resolvent approach in the Fourier method”, Dokl. Math., 90:2 (2014), 545–548 | DOI | DOI | MR
[2] Krylov A. N., On Some Differential Equations of Mathematical Physics Having Applications in Engineering, Gosudarstv. Izdat. Tehn.-Teor. Lit., L., 1950, 368 pp. | MR
[3] Kornev V. V., Khromov A. P., “Resolvent approach to the Fourier method in a mixed problem for the wave equation”, Comput. Math. Math. Phys., 55:4 (2015), 618–627 | DOI | DOI | MR
[4] Kurdyumov V. P., Khromov A. P., “Justification of the Fourier method for the wave equation with minimum requirements for initial data”, Mathematics. Mechanics, 17, Saratov Univ. Press, Saratov, 2015, 32–36
[5] Gurevich A. P., Kurdyumov V. P., Khromov A. P. Justification of, “Fourier method in a mixed problem for wave equation with non-zero velocity”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 16:1 (2016), 13–29 (in Russian) | DOI | MR
[6] Khromov A. P., “Behavior of the formal solution to a mixed problem for the wave equation”, Comput. Math. Math. Phys., 56:2 (2016), 243–255 | DOI | DOI | MR
[7] Steklov V. A., Fundamental Problems of Mathematical Physics, Nauka, M., 1983, 432 pp. | MR
[8] Petrovsky I. G, Lectures on partial differential equations, Interscience, New York, 1954, 245 pp. | MR | MR
[9] Smirnov V. I., A Course of Higher Mathematics, v. 4, Addison-Wesley, Reading, Mass., 1964 | MR | MR
[10] Ladyzhenskaya O. A, Mixed Problems for Hyperbolic Equations, Gostekhizdat, M., 1953, 282 pp. | MR
[11] Il'in V. A., Selected Works, v. 1, Maks-press, M., 2008, 727 pp.
[12] Il'in V. A., “The solvability of mixed problems for hyperbolic and parabolic equations”, Russ. Math. Surv., 15:1 (1960), 85–142 | DOI | MR
[13] Naimark M. A., Linear Differential Operators: Two Volumes Bound as One, Dover Publications, Inc., 2012, 528 pp. | MR
[14] Rasulov M. L., Contour Integral Method and Its Application to Problems for Differential Equations, Nauka, M., 1964, 462 pp. | MR
[15] Vagabov A. I., Introduction to the Spectral Theory of Differential Operators, Izd-vo Rost. un-ta, Rostov on Don, 1994, 160 pp.
[16] Marchenko V. A., Sturm – Liouville Operators and Their Applications, Naukova Dumka, Kiev, 1977, 392 pp. | MR
[17] Lavrentiev M. A., Shabat B. V., Methods of the Theory of Functions of a Complex Variable, Nauka, M., 1965, 716 pp. | MR
[18] Carleson L., “On convergence and growth of partial sums of Fourier series”, Acta Math., 116:1 (1966), 135–157 | DOI | MR