Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2018_18_2_a1, author = {A. A. Golubkov}, title = {Inverse problem for {Sturm--Liouville} operators in the complex plane}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {144--156}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a1/} }
TY - JOUR AU - A. A. Golubkov TI - Inverse problem for Sturm--Liouville operators in the complex plane JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2018 SP - 144 EP - 156 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a1/ LA - ru ID - ISU_2018_18_2_a1 ER -
A. A. Golubkov. Inverse problem for Sturm--Liouville operators in the complex plane. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 2, pp. 144-156. http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a1/
[1] Marchenko V. A., Sturm – Liouville operators and their applications, Birkhäuser, 1986, 393 pp. | MR | MR
[2] Levitan B. M., Inverse Sturm – Liouville problems, VNU Sci. Press, Utrecht, 1987, 246 pp. | MR | MR
[3] Yurko V. A., Method of Spectral Mappings in the Inverse Problem Theory. Inverse and Ill-posed Problems Series, VSP, Utrecht, 2002, 316 pp. | MR
[4] Golubkov A. A., Makarov V. A., “Inverse spectral problem for a generalized Sturm – Liouville equation with complex-valued coefficients”, Differential Equations, 47:10 (2011), 1514–1519 | DOI | MR
[5] Golubkov A. A., Makarov V. A., “Reconstruction of the coordinate dependence of the diagonal form of the dielectric permittivity tensor of a one-dimensionally inhomogeneous medium”, Moscow University Physics Bulletin, 65:3 (2010), 189–194 | DOI
[6] Angeluts A. A., Golubkov A. A., Makarov V. A., Shkurinov A. P, “Reconstruction of the spectrum of the relative permittivity of the plane-parallel plate from the angular dependences of its transmission coefficients”, JETP Letters, 93:4 (2011), 191–194 | DOI
[7] Levitan B. M., Sargsyan I. S., Sturm – Liouville and Dirac Operators, Mathematics and Its Applications (Soviet Series), 59, Springer, Dordrecht, 1990, 350 pp. | DOI | MR | MR
[8] Ishkin Kh. K., “Necessary Conditions for the Localization of the Spectrum of the Sturm – Liouville Problem on a Curve”, Math. Notes, 78:1 (2005), 64–75 | DOI | DOI | MR
[9] Fedoryuk M. V., Asymptotic analysis: linear ordinary differential equations, Springer–Verlag, Berlin, 1993, 363 pp. | MR | MR
[10] Coddington E. A., Levinson N., Theory of ordinary differential equations, McGraw-Hill, New York, 1955, 429 pp. | MR
[11] Wasow W., Asymptotic expansions for ordinary differential equations, Dover Publications, New York, 1988, 384 pp. | MR
[12] Ishkin Kh. K., “Localization criterion for the spectrum of the Sturm – Liouville operator on a curve”, St. Petersburg Mathematical Journal, 28:1 (2017), 37–63 | DOI | MR
[13] Ishkin Kh. K., “On the uniqueness criterion for solutions of the Sturm – Liouville equation”, Math. Notes, 84:4 (2008), 515–528 | DOI | DOI | MR
[14] Ishkin Kh. K., “On a trivial monodromy criterion for the Sturm – Liouville equation”, Math. Notes, 94:4 (2013), 508–523 | DOI | DOI | MR