To Chang theorem. III
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 2, pp. 128-143

Voir la notice de l'article provenant de la source Math-Net.Ru

Various multilinear polynomials of Capelli type belonging to a free associative algebra $F\{X\cup Y\}$ over an arbitrary field $F$ generated by a countable set $X \cup Y$ are considered. The formulas expressing coefficients of polynomial Chang ${\mathcal R}(\bar x, \bar y \vert \bar w)$ are found. It is proved that if the characteristic of field $F$ is not equal two then polynomial ${\mathcal R}(\bar x, \bar y \vert \bar w)$ may be represented by different ways in the form of sum of two consequences of standard polynomial $S^-(\bar x)$. The decomposition of Chang polynomial ${\mathcal H}(\bar x, \bar y \vert \bar w)$ different from already known is given. Besides, the connection between polynomials ${\mathcal R}(\bar x, \bar y \vert \bar w)$ and ${\mathcal H}(\bar x, \bar y \vert \bar w)$ is found. Some consequences of standard polynomial being of great interest for algebras with polynomial identities are obtained. In particular, a new identity of minimal degree for odd component of $Z_2$-graded matrix algebra $M^{(m,m)}(F)$ is given.
@article{ISU_2018_18_2_a0,
     author = {S. Yu. Antonov and A. V. Antonova},
     title = {To {Chang} theorem. {III}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {128--143},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a0/}
}
TY  - JOUR
AU  - S. Yu. Antonov
AU  - A. V. Antonova
TI  - To Chang theorem. III
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2018
SP  - 128
EP  - 143
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a0/
LA  - ru
ID  - ISU_2018_18_2_a0
ER  - 
%0 Journal Article
%A S. Yu. Antonov
%A A. V. Antonova
%T To Chang theorem. III
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2018
%P 128-143
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a0/
%G ru
%F ISU_2018_18_2_a0
S. Yu. Antonov; A. V. Antonova. To Chang theorem. III. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 2, pp. 128-143. http://geodesic.mathdoc.fr/item/ISU_2018_18_2_a0/