On application of elliptic curves in some electronic voting protocols
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 1, pp. 62-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

Electronic voting protocols allow us to carry out voting procedure in which ballots exist only electronically. These protocols provide the secret nature of vote. The main property of electronic voting protocols is the universal checkability, i.e. provision of an opportunity to any person interested, including detached onlookers to check correctness of counting of votes at any moment. In operation cryptography protocols of electronic vote of Shauma–Pederson and Kramera–Franklin–Shoyenmeykersa–Yunga are considered. These protocols are provided on the basis of elliptic curves which application allows us to reduce considerably the sizes of parameters of protocols and to increase their cryptography firmness. Primary benefit of elliptic cryptography is that any subexponential algorithm of the decision of the task of the discrete logarithming in group of points of an elliptic curve is not known at the moment.
@article{ISU_2018_18_1_a5,
     author = {S. M. Ratseev and O. I. Cherevatenko},
     title = {On application of elliptic curves in some electronic voting protocols},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {62--68},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a5/}
}
TY  - JOUR
AU  - S. M. Ratseev
AU  - O. I. Cherevatenko
TI  - On application of elliptic curves in some electronic voting protocols
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2018
SP  - 62
EP  - 68
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a5/
LA  - ru
ID  - ISU_2018_18_1_a5
ER  - 
%0 Journal Article
%A S. M. Ratseev
%A O. I. Cherevatenko
%T On application of elliptic curves in some electronic voting protocols
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2018
%P 62-68
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a5/
%G ru
%F ISU_2018_18_1_a5
S. M. Ratseev; O. I. Cherevatenko. On application of elliptic curves in some electronic voting protocols. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 1, pp. 62-68. http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a5/

[1] Hankerson D., Menezes A., Vanstone S., Guide to Elliptic Curve Cryptography, Springer-Verlag, N. Y., 2004, 358 pp. | MR

[2] An Elliptic Curve Cryptography (ECC) Primer: why ECC is the next generation of public key cryptography, The Certicom Corp. 'Catch the Curve' White Paper Series, , June 2004, 24 pp. (Accessed 05.09.2017) https://www.certicom.com/content/dam/certicom/images/pdfs/WP-ECCprimer.pdf

[3] V. V. Yashchenko (ed.), Introduction to cryptography, MTsNMO Publ., M., 2012, 348 pp. (in Russian)

[4] Chaum D., Pedersen T. P., “Wallet databases with observers”, Proc. Crypto'92, Lect. Notes in Comput. Sci., 740, 1993, 89–105 | DOI

[5] Cramer R., Gennaro R., Schoenmakers B., “A secure and optimally efficient multi-authority election scheme”, Proc. EUROCRYPT'97, Lect. Notes in Comput. Sci., 1233, 1997, 103–118 | DOI | MR

[6] Cramer R., Franklin M., Schoenmakers B., Yung M., “Multi-Authority Secret-Ballot Elections with Linear Work”, Proc. EUROCRYPT'96, Lect. Notes in Comput. Sci., 1070, 1996, 72–83 | DOI | MR

[7] Cheremushkin A. V., Cryptography protocols. Main properties and vulnerabilities, Academy, M., 2009, 272 pp. (in Russian)

[8] Pedersen T. P., “Non-interactive and information-theoretic secure verifiable secret sharing”, Proc. EUROCRYPT'91, Lect. Notes in Comput. Sci., 576, 1992, 129–140 | DOI | MR

[9] Zubov A. Yu., Cryptographic Methods of Information Security. Perfect ciphers, Gelios ARV, M., 2005, 192 pp. (in Russian)

[10] Ratseev S. M., “Some generalizations of Shannon's theory of perfect ciphers”, Bulletin of the South Ural State University, Ser. : Mathematical Modelling, Programming and Computer Software, 8:1 (2015), 111–127 (in Russian)