Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2018_18_1_a4, author = {K. A. Navasardyan}, title = {On the representation of functions by absolutely convergent series by $\mathcal{H}$-system}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {49--61}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a4/} }
TY - JOUR AU - K. A. Navasardyan TI - On the representation of functions by absolutely convergent series by $\mathcal{H}$-system JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2018 SP - 49 EP - 61 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a4/ LA - ru ID - ISU_2018_18_1_a4 ER -
%0 Journal Article %A K. A. Navasardyan %T On the representation of functions by absolutely convergent series by $\mathcal{H}$-system %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2018 %P 49-61 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a4/ %G ru %F ISU_2018_18_1_a4
K. A. Navasardyan. On the representation of functions by absolutely convergent series by $\mathcal{H}$-system. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 1, pp. 49-61. http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a4/
[1] Macias R., Segovia C., “Lipschitz functions on spaces of homogeneous type”, Adv. in Math., 33 (1979), 271–309 | DOI | MR
[2] Christ A., “A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral”, Colloquium Math., 60/61:2 (1990), 601–628 | DOI | MR
[3] Aimar H., Bernardis A., Iaffel B., “Multiresolution Approximations and Unconditional Bases on Weighted Lebesgue Spaces on Spaces of Homogeneous Type”, J. Approx. Theory, 148:1 (2007), 12–34 | DOI | MR
[4] Aimar H., Bernardis A., Nowak L., “Equivalence of Haar Bases Associated to Different Dyadic Systems”, J. of Geometric Analysis, 21:2 (2011), 288–304 | DOI | MR
[5] Aimar H., Bernardis A., Nowak L., “Dyadic Fefferman–Stein Inequalities and the Equivalence of Haar Bases on Weighted Lebesgue Spaces”, Proceedings of the Royal Society of Edinburgh Section A: Math., 141:1 (2011), 1–22 | DOI | MR
[6] Luzin N. N., Integral and trigonometric series, Gostehizdat, M.–L., 1951, 550 pp. (in Russian) | MR
[7] Arutyunyan F. G., “On series in the Haar system”, Dokl. Akad. Nauk Armyanskoi SSR, 42:3 (1966), 134–140 (in Russian) | MR
[8] Davtyan R. S., “On Representation of Functions by Orthogonal Series Possessing Martingale Properties”, Math. Notes, 19:5 (1976), 405–409 | DOI | MR
[9] Gevorkjan G. G., “On the Representation of Measurable Functions by Martingales”, Analysis Math., 8:4 (1982), 239–256 | DOI | MR
[10] Gevorkian G. G., “Representation of Measurable Functions by Absolutely Convergent Series of Translates and Dilates of One Function”, East J. Approx., 2:4 (1996), 439–458 | MR
[11] Golubov B. I., “On a class of complete orthogonal systems”, Sibirskij matematiceskij zurnal, 9:2 (1968), 297–314 (in Russian) | MR