Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2018_18_1_a3, author = {M. A. Kuznetsova}, title = {Asymptotic formulae for weight numbers of the {Sturm--Liouville} boundary problem on a star-shaped graph}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {40--48}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a3/} }
TY - JOUR AU - M. A. Kuznetsova TI - Asymptotic formulae for weight numbers of the Sturm--Liouville boundary problem on a star-shaped graph JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2018 SP - 40 EP - 48 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a3/ LA - en ID - ISU_2018_18_1_a3 ER -
%0 Journal Article %A M. A. Kuznetsova %T Asymptotic formulae for weight numbers of the Sturm--Liouville boundary problem on a star-shaped graph %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2018 %P 40-48 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a3/ %G en %F ISU_2018_18_1_a3
M. A. Kuznetsova. Asymptotic formulae for weight numbers of the Sturm--Liouville boundary problem on a star-shaped graph. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 1, pp. 40-48. http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a3/
[1] Yang C.-F., Huang Z.-Y., Yang X.-P., “Trace formulas for Schrödinger systems on graphs”, Turkish J. Math., 34:2 (2010), 181–196 | DOI | MR
[2] Berkolaiko G., Kuchment P., Introduction to Quantum Graphs, AMS, Providence, RI, 2013, 270 pp. | MR
[3] Pokorny Yu. V., Penkin O. M., Borovskikh A. V., Pryadiev V. L., Lazarev K. P., Shabrov S. A., Differential Equations on Geometrical Graphs, Fizmatlit, M., 2004, 272 pp. (in Russian) | MR
[4] Freiling G., Yurko V. A., Inverse Sturm–Liouville problems and their applications, Nova Science, New York, 2001, 305 pp. | MR
[5] Yurko V. A., “On recovering Sturm–Liouville operators on graphs”, Math. Notes, 79:3–4 (2006), 572–582 | DOI | MR
[6] Yurko V. A., “Inverse spectral problems for differential operators on spatial networks”, Russian Math. Surveys, 71:3 (2016), 539–584 | DOI | MR
[7] Bondarenko N., “Spectral analysis for the matrix Sturm–Liouville operator on a finite interval”, Tamkang J. Math., 42:3 (2011), 305–327 | DOI | MR
[8] Pivovarchik V., “Inverse problem for the Sturm–Liouville equation on a star-shaped graph”, Math. Nachr., 280:1314 (2007), 1595–1619 | DOI | MR
[9] Möller M., Pivovarchik V., Spectral theory of operator pencils, Hermite–Biehler functions, and their applications, Birkhäuser, Cham, 2015, 412 pp. | DOI | MR
[10] Hardy G. H., Littlewood J. E., Polya G., Inequalities, Cambridge University Press, London, 1934, 456 pp. | MR