Asymptotic formulae for weight numbers of the Sturm--Liouville boundary problem on a star-shaped graph
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 1, pp. 40-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article the Sturm–Liouville boundary value problem on the graph $\Gamma$ of a special structure is considered. The graph $\Gamma$ has $m$ edges, joined at one common vertex, and $m$ vertices of degree $1$. The boundary value problem is set by the Sturm–Liouville differential expression with real-valued potentials, the Dirichlet boundary conditions, and the standard matching conditions. This problem has a countable set of eigenvalues. We consider the so-called weight numbers, being the residues of the diagonal elements of the Weyl matrix in the eigenvalues. These elements are meromorphic functions with simple poles which can be only the eigenvalues. We note that the considered weight numbers generalize the weight numbers of Sturm–Liouville operators on a finite interval, equal to the reciprocals to the squared norms of eigenfunctions. These numbers together with the eigenvalues play a role of spectral data for unique reconstruction of operators.We obtain asymptotic formulae for the weight numbers using the contour integration, and in the case of the asymptotically close eigenvalues the formulae are got for the sums. The formulae can be used for the analysis of inverse spectral problems on the graphs.
@article{ISU_2018_18_1_a3,
     author = {M. A. Kuznetsova},
     title = {Asymptotic formulae for weight numbers of the {Sturm--Liouville} boundary problem on a star-shaped graph},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {40--48},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a3/}
}
TY  - JOUR
AU  - M. A. Kuznetsova
TI  - Asymptotic formulae for weight numbers of the Sturm--Liouville boundary problem on a star-shaped graph
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2018
SP  - 40
EP  - 48
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a3/
LA  - en
ID  - ISU_2018_18_1_a3
ER  - 
%0 Journal Article
%A M. A. Kuznetsova
%T Asymptotic formulae for weight numbers of the Sturm--Liouville boundary problem on a star-shaped graph
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2018
%P 40-48
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a3/
%G en
%F ISU_2018_18_1_a3
M. A. Kuznetsova. Asymptotic formulae for weight numbers of the Sturm--Liouville boundary problem on a star-shaped graph. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 1, pp. 40-48. http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a3/

[1] Yang C.-F., Huang Z.-Y., Yang X.-P., “Trace formulas for Schrödinger systems on graphs”, Turkish J. Math., 34:2 (2010), 181–196 | DOI | MR

[2] Berkolaiko G., Kuchment P., Introduction to Quantum Graphs, AMS, Providence, RI, 2013, 270 pp. | MR

[3] Pokorny Yu. V., Penkin O. M., Borovskikh A. V., Pryadiev V. L., Lazarev K. P., Shabrov S. A., Differential Equations on Geometrical Graphs, Fizmatlit, M., 2004, 272 pp. (in Russian) | MR

[4] Freiling G., Yurko V. A., Inverse Sturm–Liouville problems and their applications, Nova Science, New York, 2001, 305 pp. | MR

[5] Yurko V. A., “On recovering Sturm–Liouville operators on graphs”, Math. Notes, 79:3–4 (2006), 572–582 | DOI | MR

[6] Yurko V. A., “Inverse spectral problems for differential operators on spatial networks”, Russian Math. Surveys, 71:3 (2016), 539–584 | DOI | MR

[7] Bondarenko N., “Spectral analysis for the matrix Sturm–Liouville operator on a finite interval”, Tamkang J. Math., 42:3 (2011), 305–327 | DOI | MR

[8] Pivovarchik V., “Inverse problem for the Sturm–Liouville equation on a star-shaped graph”, Math. Nachr., 280:1314 (2007), 1595–1619 | DOI | MR

[9] Möller M., Pivovarchik V., Spectral theory of operator pencils, Hermite–Biehler functions, and their applications, Birkhäuser, Cham, 2015, 412 pp. | DOI | MR

[10] Hardy G. H., Littlewood J. E., Polya G., Inequalities, Cambridge University Press, London, 1934, 456 pp. | MR