Approximation properties of dicrete Fourier sums for some piecewise linear functions
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 1, pp. 4-16

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $N$ be a natural number greater than $1$. We select $N$ uniformly distributed points $t_k = 2\pi k / N$ $(0 \leq k \leq N - 1)$ on $[0,2\pi]$. Denote by $L_{n,N}(f)=L_{n,N}(f,x)$ $(1\leq n\leq N/2)$ the trigonometric polynomial of order $n$ possessing the least quadratic deviation from $f$ with respect to the system $\{t_k\}_{k=0}^{N-1}$. In other words, the greatest lower bound of the sums $\sum_{k=0}^{N-1}|f(t_k)-T_n(t_k)|^2$ on the set of trigonometric polynomials $T_n$ of order $n$ is attained by $L_{n,N}(f)$. In the present article the problem of function approximation by the polynomials $L_{n,N}(f,x)$ is considered. Using some example functions we show that the polynomials $L_{n,N}(f,x)$ uniformly approximate a piecewise-linear continuous function with a convergence rate $O(1/n)$ with respect to the variables $x \in \mathbb{R}$ and $1 \leq n \leq N/2$. These polynomials also uniformly approximate the same function with a rate $O(1/n^2)$ outside of some neighborhood of function's “crease” points. Also we show that the polynomials $L_{n,N}(f,x)$ uniformly approximate a piecewise-linear discontinuous function with a rate $O(1/n)$ with respect to the variables $x$ and $1 \leq n \leq N/2$ outside some neighborhood of discontinuity points. Special attention is paid to approximation of $2\pi$-periodic functions $f_1$ and $f_2$ by the polynomials $L_{n,N}(f,x)$, where $f_1(x)=|x|$ and $f_2(x)=\mathrm{sign }\, x$ for $x \in [-\pi,\pi]$. For the first function $f_1$ we show that instead of the estimate $\left|f_{1}(x)-L_{n,N}(f_{1},x)\right| \leq c\ln n/n$ which follows from the well-known Lebesgue inequality for the polynomials $L_{n,N}(f,x)$ we found an exact order estimate $\left|f_{1}(x)-L_{n,N}(f_{1},x)\right| \leq c/n$ ($x \in \mathbb{R}$) which is uniform relative to $1 \leq n \leq N/2$. Moreover, we found a local estimate $\left|f_{1}(x)-L_{n,N}(f_{1},x)\right| \leq c(\varepsilon)/n^2$ ($\left|x - \pi k\right| \geq \varepsilon$) which is also uniform relative to $1 \leq n \leq N/2$. For the second function $f_2$ we found only a local estimate $\left|f_{2}(x)-L_{n,N}(f_{2},x)\right| \leq c(\varepsilon)/n$ ($\left|x - \pi k\right| \geq \varepsilon$) which is uniform relative to $1 \leq n \leq N/2$. The proofs of these estimations are based on comparing of approximating properties of discrete and continuous finite Fourier series.
@article{ISU_2018_18_1_a0,
     author = {G. G. Akniev},
     title = {Approximation properties of dicrete {Fourier} sums for some piecewise linear functions},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {4--16},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a0/}
}
TY  - JOUR
AU  - G. G. Akniev
TI  - Approximation properties of dicrete Fourier sums for some piecewise linear functions
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2018
SP  - 4
EP  - 16
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a0/
LA  - ru
ID  - ISU_2018_18_1_a0
ER  - 
%0 Journal Article
%A G. G. Akniev
%T Approximation properties of dicrete Fourier sums for some piecewise linear functions
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2018
%P 4-16
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a0/
%G ru
%F ISU_2018_18_1_a0
G. G. Akniev. Approximation properties of dicrete Fourier sums for some piecewise linear functions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 1, pp. 4-16. http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a0/