Approximation properties of dicrete Fourier sums for some piecewise linear functions
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 1, pp. 4-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $N$ be a natural number greater than $1$. We select $N$ uniformly distributed points $t_k = 2\pi k / N$ $(0 \leq k \leq N - 1)$ on $[0,2\pi]$. Denote by $L_{n,N}(f)=L_{n,N}(f,x)$ $(1\leq n\leq N/2)$ the trigonometric polynomial of order $n$ possessing the least quadratic deviation from $f$ with respect to the system $\{t_k\}_{k=0}^{N-1}$. In other words, the greatest lower bound of the sums $\sum_{k=0}^{N-1}|f(t_k)-T_n(t_k)|^2$ on the set of trigonometric polynomials $T_n$ of order $n$ is attained by $L_{n,N}(f)$. In the present article the problem of function approximation by the polynomials $L_{n,N}(f,x)$ is considered. Using some example functions we show that the polynomials $L_{n,N}(f,x)$ uniformly approximate a piecewise-linear continuous function with a convergence rate $O(1/n)$ with respect to the variables $x \in \mathbb{R}$ and $1 \leq n \leq N/2$. These polynomials also uniformly approximate the same function with a rate $O(1/n^2)$ outside of some neighborhood of function's “crease” points. Also we show that the polynomials $L_{n,N}(f,x)$ uniformly approximate a piecewise-linear discontinuous function with a rate $O(1/n)$ with respect to the variables $x$ and $1 \leq n \leq N/2$ outside some neighborhood of discontinuity points. Special attention is paid to approximation of $2\pi$-periodic functions $f_1$ and $f_2$ by the polynomials $L_{n,N}(f,x)$, where $f_1(x)=|x|$ and $f_2(x)=\mathrm{sign }\, x$ for $x \in [-\pi,\pi]$. For the first function $f_1$ we show that instead of the estimate $\left|f_{1}(x)-L_{n,N}(f_{1},x)\right| \leq c\ln n/n$ which follows from the well-known Lebesgue inequality for the polynomials $L_{n,N}(f,x)$ we found an exact order estimate $\left|f_{1}(x)-L_{n,N}(f_{1},x)\right| \leq c/n$ ($x \in \mathbb{R}$) which is uniform relative to $1 \leq n \leq N/2$. Moreover, we found a local estimate $\left|f_{1}(x)-L_{n,N}(f_{1},x)\right| \leq c(\varepsilon)/n^2$ ($\left|x - \pi k\right| \geq \varepsilon$) which is also uniform relative to $1 \leq n \leq N/2$. For the second function $f_2$ we found only a local estimate $\left|f_{2}(x)-L_{n,N}(f_{2},x)\right| \leq c(\varepsilon)/n$ ($\left|x - \pi k\right| \geq \varepsilon$) which is uniform relative to $1 \leq n \leq N/2$. The proofs of these estimations are based on comparing of approximating properties of discrete and continuous finite Fourier series.
@article{ISU_2018_18_1_a0,
     author = {G. G. Akniev},
     title = {Approximation properties of dicrete {Fourier} sums for some piecewise linear functions},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {4--16},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a0/}
}
TY  - JOUR
AU  - G. G. Akniev
TI  - Approximation properties of dicrete Fourier sums for some piecewise linear functions
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2018
SP  - 4
EP  - 16
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a0/
LA  - ru
ID  - ISU_2018_18_1_a0
ER  - 
%0 Journal Article
%A G. G. Akniev
%T Approximation properties of dicrete Fourier sums for some piecewise linear functions
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2018
%P 4-16
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a0/
%G ru
%F ISU_2018_18_1_a0
G. G. Akniev. Approximation properties of dicrete Fourier sums for some piecewise linear functions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 1, pp. 4-16. http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a0/

[1] Sharapudinov I. I., “On the best approximation and polynomials of the least quadratic deviation”, Analysis Math., 9:3 (1983), 223–234 | DOI | MR

[2] Bernshtein S. N., “On trigonometric interpolation by the least squares method”, Soviet Math. Dokl., 4:1 (1934), 1–5 (in Russian)

[3] Erdös P., “Some theorems and remarks on interpolation”, Acta Sci. Math. (Szeged), 12 (1950), 11–17 | MR

[4] Kalashnikov M. D., “On polynomials of best quadratic approximation in a given system of points”, Soviet Math. Dokl., 105 (1955), 634–636 (in Russian)

[5] Krylov V. I., “Convergence of algebraic interpolation with respect to the roots of Chebyshev's polynomial for absolutely continuous functions and functions of bounded variation”, Soviet Math. Dokl., 107 (1956), 362–365 (in Russian)

[6] Marcinkiewicz J., “Quelques remarques sur l'interpolation”, Acta Sci. Math. (Szeged), 8 (1936), 127–130

[7] Marcinkiewicz J., “Sur la divergence des polynômes d'interpolation”, Acta Sci. Math. (Szeged), 8 (1936), 131–135

[8] Natanson I. P., “On the convergence of trigonometrical interpolation at equidistant knots”, Ann. of Math., 45 (1944), 457–471 | DOI | MR

[9] Nikolski S., “Sur certaines méthodes d'approximation au moyen de sommes trigonométriques”, Bull. Acad. Sci. URSS. Ser. Math., 4:6 (1940), 509–520 (in Russian. French summary)

[10] Turethkii A. H., Interpolation theory in problems, Vysheishaya Shkola, M., 1968, 320 pp. (in Russian)

[11] Zygmund A., Trigonometric Series, v. 1–2, Cambridge University Press, 2015, 747 pp. | MR

[12] Fikhtengol'ts G. M., Course of Differential and Integral Calculus, in 3 vols, v. 3, Fizmatlit, M., 1969, 656 pp. (in Russian)

[13] Magomed-Kasumov M. G., “Approximation properties of de la Vallée-Poussin means for piecewise smooth functions”, Math. Notes, 100:2 (2016), 229–244 | DOI | DOI | MR