Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2018_18_1_a0, author = {G. G. Akniev}, title = {Approximation properties of dicrete {Fourier} sums for some piecewise linear functions}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {4--16}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a0/} }
TY - JOUR AU - G. G. Akniev TI - Approximation properties of dicrete Fourier sums for some piecewise linear functions JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2018 SP - 4 EP - 16 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a0/ LA - ru ID - ISU_2018_18_1_a0 ER -
%0 Journal Article %A G. G. Akniev %T Approximation properties of dicrete Fourier sums for some piecewise linear functions %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2018 %P 4-16 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a0/ %G ru %F ISU_2018_18_1_a0
G. G. Akniev. Approximation properties of dicrete Fourier sums for some piecewise linear functions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 1, pp. 4-16. http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a0/
[1] Sharapudinov I. I., “On the best approximation and polynomials of the least quadratic deviation”, Analysis Math., 9:3 (1983), 223–234 | DOI | MR
[2] Bernshtein S. N., “On trigonometric interpolation by the least squares method”, Soviet Math. Dokl., 4:1 (1934), 1–5 (in Russian)
[3] Erdös P., “Some theorems and remarks on interpolation”, Acta Sci. Math. (Szeged), 12 (1950), 11–17 | MR
[4] Kalashnikov M. D., “On polynomials of best quadratic approximation in a given system of points”, Soviet Math. Dokl., 105 (1955), 634–636 (in Russian)
[5] Krylov V. I., “Convergence of algebraic interpolation with respect to the roots of Chebyshev's polynomial for absolutely continuous functions and functions of bounded variation”, Soviet Math. Dokl., 107 (1956), 362–365 (in Russian)
[6] Marcinkiewicz J., “Quelques remarques sur l'interpolation”, Acta Sci. Math. (Szeged), 8 (1936), 127–130
[7] Marcinkiewicz J., “Sur la divergence des polynômes d'interpolation”, Acta Sci. Math. (Szeged), 8 (1936), 131–135
[8] Natanson I. P., “On the convergence of trigonometrical interpolation at equidistant knots”, Ann. of Math., 45 (1944), 457–471 | DOI | MR
[9] Nikolski S., “Sur certaines méthodes d'approximation au moyen de sommes trigonométriques”, Bull. Acad. Sci. URSS. Ser. Math., 4:6 (1940), 509–520 (in Russian. French summary)
[10] Turethkii A. H., Interpolation theory in problems, Vysheishaya Shkola, M., 1968, 320 pp. (in Russian)
[11] Zygmund A., Trigonometric Series, v. 1–2, Cambridge University Press, 2015, 747 pp. | MR
[12] Fikhtengol'ts G. M., Course of Differential and Integral Calculus, in 3 vols, v. 3, Fizmatlit, M., 1969, 656 pp. (in Russian)
[13] Magomed-Kasumov M. G., “Approximation properties of de la Vallée-Poussin means for piecewise smooth functions”, Math. Notes, 100:2 (2016), 229–244 | DOI | DOI | MR