Approximation properties of dicrete Fourier sums for some piecewise linear functions
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 1, pp. 4-16
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $N$ be a natural number greater than $1$. We select
$N$ uniformly distributed points $t_k = 2\pi k / N$ $(0 \leq k
\leq N - 1)$ on $[0,2\pi]$. Denote by $L_{n,N}(f)=L_{n,N}(f,x)$
$(1\leq n\leq N/2)$ the trigonometric polynomial of order $n$
possessing the least quadratic deviation from $f$ with respect to
the system $\{t_k\}_{k=0}^{N-1}$. In other words, the greatest
lower bound of the sums $\sum_{k=0}^{N-1}|f(t_k)-T_n(t_k)|^2$ on
the set of trigonometric polynomials $T_n$ of order $n$ is
attained by $L_{n,N}(f)$. In the present article the problem of
function approximation by the polynomials $L_{n,N}(f,x)$ is
considered. Using some example functions we show that the
polynomials $L_{n,N}(f,x)$ uniformly approximate a
piecewise-linear continuous function with a convergence rate
$O(1/n)$ with respect to the variables $x \in \mathbb{R}$ and $1
\leq n \leq N/2$. These polynomials also uniformly approximate the
same function with a rate $O(1/n^2)$ outside of some neighborhood
of function's “crease” points. Also we show that
the polynomials $L_{n,N}(f,x)$ uniformly approximate a
piecewise-linear discontinuous function with a rate $O(1/n)$ with
respect to the variables $x$ and $1 \leq n \leq N/2$ outside some
neighborhood of discontinuity points. Special attention is paid to
approximation of $2\pi$-periodic functions $f_1$ and $f_2$ by the
polynomials $L_{n,N}(f,x)$, where $f_1(x)=|x|$ and
$f_2(x)=\mathrm{sign }\, x$ for $x \in [-\pi,\pi]$. For the first
function $f_1$ we show that instead of the estimate
$\left|f_{1}(x)-L_{n,N}(f_{1},x)\right| \leq c\ln n/n$ which
follows from the well-known Lebesgue inequality for the
polynomials $L_{n,N}(f,x)$ we found an exact order estimate
$\left|f_{1}(x)-L_{n,N}(f_{1},x)\right| \leq c/n$ ($x \in
\mathbb{R}$) which is uniform relative to $1 \leq n \leq N/2$.
Moreover, we found a local estimate
$\left|f_{1}(x)-L_{n,N}(f_{1},x)\right| \leq c(\varepsilon)/n^2$
($\left|x - \pi k\right| \geq \varepsilon$) which is also uniform
relative to $1 \leq n \leq N/2$. For the second function $f_2$ we
found only a local estimate
$\left|f_{2}(x)-L_{n,N}(f_{2},x)\right| \leq c(\varepsilon)/n$
($\left|x - \pi k\right| \geq \varepsilon$) which is uniform
relative to $1 \leq n \leq N/2$. The proofs of these estimations
are based on comparing of approximating properties of discrete
and continuous finite Fourier series.
@article{ISU_2018_18_1_a0,
author = {G. G. Akniev},
title = {Approximation properties of dicrete {Fourier} sums for some piecewise linear functions},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {4--16},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a0/}
}
TY - JOUR AU - G. G. Akniev TI - Approximation properties of dicrete Fourier sums for some piecewise linear functions JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2018 SP - 4 EP - 16 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a0/ LA - ru ID - ISU_2018_18_1_a0 ER -
%0 Journal Article %A G. G. Akniev %T Approximation properties of dicrete Fourier sums for some piecewise linear functions %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2018 %P 4-16 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a0/ %G ru %F ISU_2018_18_1_a0
G. G. Akniev. Approximation properties of dicrete Fourier sums for some piecewise linear functions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 1, pp. 4-16. http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a0/