Connections of nonzero curvature on three-dimensional non-reductive spaces
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 4, pp. 381-393.

Voir la notice de l'article provenant de la source Math-Net.Ru

When a homogeneous space admits an invariant affine connection? If there exists at least one invariant connection then the space is isotropy-faithful, but the isotropy-faithfulness is not sufficient for the space in order to have invariant connections. If a homogeneous space is reductive, then the space admits an invariant connection. The purpose of the work is a description of three-dimensional non-reductive homogeneous spaces, admitting invariant affine connections of nonzero curvature only, and the affine connections, curvature and torsion tensors. The basic notions, such as an isotropically-faithful pair, an affine connection, curvature and torsion tensors, a reductive space are defined. The local description of three-dimensional non-reductive homogeneous spaces, admitting connections of nonzero curvature only, is given. The local classification of such spaces is equivalent to the description of the effective pairs of Lie algebras. All invariant affine connections on those spaces are described, curvature and torsion tensors are found.
@article{ISU_2017_17_4_a1,
     author = {N. P. Mozhey},
     title = {Connections of nonzero curvature on three-dimensional non-reductive spaces},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {381--393},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2017_17_4_a1/}
}
TY  - JOUR
AU  - N. P. Mozhey
TI  - Connections of nonzero curvature on three-dimensional non-reductive spaces
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2017
SP  - 381
EP  - 393
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2017_17_4_a1/
LA  - ru
ID  - ISU_2017_17_4_a1
ER  - 
%0 Journal Article
%A N. P. Mozhey
%T Connections of nonzero curvature on three-dimensional non-reductive spaces
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2017
%P 381-393
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2017_17_4_a1/
%G ru
%F ISU_2017_17_4_a1
N. P. Mozhey. Connections of nonzero curvature on three-dimensional non-reductive spaces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 4, pp. 381-393. http://geodesic.mathdoc.fr/item/ISU_2017_17_4_a1/

[1] Lie S., Engel F., Theorie der Transformationsgruppen, v. 3, Teubner, Leipzig, 1893, 830 pp. | Zbl

[2] Gorbatsevich V. V., Onishchik A. L., “Lie groups of transformations”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 20, VINITI, M., 1988, 103–240 (in Russian)

[3] Alekseevskii D. V., Vinogradov A. M., Lychagin V. V., “Basic ideas and concepts of differential geometry”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 28, VINITI, M., 1988, 5–297 (in Russian)

[4] Mozhey N. P., Three-dimensional isotropy-faithful homogeneous spaces and connections on them, Kazan' Univ. Press, Kazan', 2015, 394 pp. (in Russian)

[5] Petrov A. Z., New methods in the general theory of relativity, Nauka, M., 1966, 496 pp. (in Russian)

[6] Onishchik A. L., Topology of transitive Lie transformation groups, Fizmatlit, M., 1995, 384 pp. (in Russian)

[7] Nomizu K., “Invariant affine connections on homogeneous spaces”, Amer. J. Math., 76:1 (1954), 33–65 | DOI | MR | Zbl

[8] Kobayashi S., Nomizu K., Foundations of differential geometry, v. 1, John Wiley and Sons, N. Y., 1963 ; v. 2, 1969 | MR | Zbl

[9] Mozhey N., “Three-dimensional Homogeneous Spaces, Not Admitting Invariant Connections”, Izv. Saratov Univ. Ser. Math. Mech. Inform., 16:4 (2016), 413–421 (in Russian) | DOI | Zbl

[10] Rashevski P. K., “Symmetric spaces of affine connection with torsion”, Proceedings of the seminar on vector and tensor analysis, 1969, no. 8, 82–92 (in Russian) | Zbl